• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 80
  • 46
  • 45
  • 34
  • 10
  • 8
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 153
  • 110
  • 101
  • 98
  • 97
  • 78
  • 75
  • 61
  • 50
  • 46
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Experimental Measurements of LiFePO4 Battery Thermal Characteristics

Mathewson, Scott January 2014 (has links)
A major challenge in the development of next generation electric and hybrid vehicle technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. It will be shown that in the absence of active cooling, surface temperatures of operating lithium-ion batteries can reach as high as 50 °C, within 5 °C of the maximum safe operating temperature. Even in the presence of active cooling, surface temperatures greater than 45 °C are attainable. It is thus of paramount importance to electric vehicle and battery thermal management designers to quantify the effect of temperature and discharge rate on heat generation, energy output, and temperature response of operating lithium-ion batteries. This work presents a purely experimental thermal characterization of thermo-physical properties and operating behavior of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. Crucial to thermal modeling is accurate thermo-physical property input. Thermal resistance measurements were made using specially constructed battery samples. The thru-plane thermal conductivity of LiFePO4 positive electrode and negative electrode materials was found to be 1.79 ± 0.18 W/m°C and 1.17 ± 0.12 W/m°C respectively. The emissivity of the outer pouch was evaluated to enable accurate IR temperature detection and found to be 0.86. Charge-discharge testing was performed to enable thermal management design solutions. Heat generated by the battery along with surface temperature and heat flux at distributed locations was measured using a purpose built apparatus containing cold plates supplied by a controlled cooling system. Heat flux measurements were consistently recorded at values approximately 400% higher at locations near the external tabs compared to measurements taken a relatively short distance down the battery surface. The highest heat flux recorded was 3112 W/m2 near the negative electrode during a 4C discharge at 5 °C operating temperature. Total heat generated during a 4C discharge nearly doubled when operating temperature was decreased from 35 °C to 5 °C, illustrating a strong dependence of heat generation mechanisms on temperature. Peak heat generation rates followed the same trend and the maximum rate of 90.7 W occurred near the end of 5 °C, 4C discharge rate operation. As a result, the maximum value of total heat generated was 41.34 kJ during the same discharge conditions. The effect of increasing discharge rate from 1C to 4C caused heat generation to double for all operating temperatures due to the increased ohmic heating. Heat generation was highest where the thermal gradient was largest. The largest gradient, near negative electrode current collector to external tab connection and was evaluated using IR thermography to be 0.632 °C/mm during 4C discharge with passive room temperature natural convection air cooling. Battery designs should utilize a greater connection thickness to minimize both electrical resistance and current density which both drive the dominant mode of heat generation, ohmic heating. Otherwise cooling solutions should be concentrated on this region to minimize the temperature gradient on the battery.
92

Influence of Porosity on the Flame Speed in Gasless Bimetallic Reactive Systems

Akbarnejad, Hesam 29 April 2013 (has links)
Self-propagating High-temperature Synthesis (SHS) is the synthesis of solid materials by a reaction wave propagating into the initial reactants, typically two metals, which can alloy exothermically. Typically, experiments are performed with the reactants in powder form, with relatively low density. Recent experiments by Bacciochini et al. revealed much larger flame speeds in densified powders near TMD (theoritical maximum density), obtained by the cold spray process. The present thesis investigates why the flame speed increases dramatically with an increase in density of the powders. The investigation rests on the analytical model formulated by Makino by controlling how the variables are affected by changes in density. Flame speed measurements were performed in mixtures of nickel (Ni) and aluminum (Al) at different initial densities. The density was varied by controlling the cold-pressing of the samples inside metallic channels and tubes. Experiments were also performed in ball-milled powders, in order to permit comparison with the experiments performed by Bacciochini in these mixtures at nearly maximum densities. The measurements revealed that the flame speed increases with the initial density, with a discontinuous transition occurring at approximately 60% theoretical maximum density (TMD). This transition also corresponds to the point where the powders deform plastically during the compaction process, suggesting that the intimate contact between the particles is responsible for the flame speed increase. The flame speed dependence on powder density is attributed to the changes in the heat conductivity of the pressed powders. At high densities, where the powders have plastically deformed, the continuous structure yields conductivities close to the idealized solid matrix. At these high densities, the conductivity was modeled using the Effective Medium Theory (EMT). Analytical predictions of the flame speed, using available thermo-chemical data for the Al-Ni system were found in good agreement with the present experiments at high densities. At low densities, since Al-Ni is a mixture of loose powders, the EMT model is no longer applicable. Thus, the thermal conductivity was experimentally measured and then was fitted using the semi-empirical model suggested by Aivazov. Using this data, Makino's model predicts the correct flame speed dependence observed experimentally. The present thesis has thus established that the dependence of flame speed on density is due mainly to the changes in the structure and thermal conductivity of the powders.
93

Chapman-Enskog solutions to arbitrary order in Sonine polynomials

Tipton, Earl Lynn, Loyalka, S. K. Tompson, R. V. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on February 23, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Sudarshan K. Loyalka and Dr. Robert V. Tompson. Vita. Includes bibliographical references.
94

A volumetric sculpting based approach for modeling multi-scale domains

Karlapalem, Lalit Chandra Sekhar, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
95

Understanding, predicting and improving the performance of foam filled sandwich panels in large scale fire resistance tests

Foster, Andrew January 2015 (has links)
This thesis presents the results of research on sandwich panel construction, with the aims of developing tools for modelling sandwich panel fire performance and hence to use the tools to aid the development of sandwich panel construction with improved fire resistance. The research focuses on sandwich panels made of thin steel sheeting and a polyisocyanurate (PIR) foam core. For non-loadbearing sandwich panel construction, fire resistance is measured in terms of thermal insulation and integrity only. However, these two parameters are affected by mechanical performance of sandwich panel construction due to the high distortion and large deformation nature of sandwich panel construction under fire attack. Therefore, it is necessary to consider both thermal and mechanical performances of sandwich panels under fire conditions. The work in this thesis includes development of a thermal conductivity model for PIR foam as this thermal property is one of the key values in determining heat transfer through sandwich panels; this thermal conductivity model is based on the effective thermal conductivity of porous foams proposed by Glicksman (1994) and includes the effects of polymer decomposition and increases in foam cell size. It is validated against fire tests carried out on PIR sandwich panels 80mm and 100mm thick with steel facings of thickness 0.5mm. A large 3D sequentially coupled thermal-stress model of a full scale fire test has been developed in the commercial finite element analysis (FEA) software ABAQUS to provide insight into the way sandwich panels behave in a fire resistance test and also to assess different modelling techniques. Aspects and stages of the simulation that agree well with test data are explained. Limitations of the ABAQUS software for simulating sandwich panel fire tests are highlighted; namely, it is not possible to simulate the correct radiation heat transfer through panel joints, as cavity radiation cannot be specified in a fully coupled thermal-stress analysis. Joints are key components of sandwich panel construction. In order to obtain temperature development data for modelling joints, a number of fire tests have been carried out. These fire tests were conducted with different joint configurations and panel thicknesses under realistic fire conditions using timber cribs. The joint fire tests revealed significant ablation of the foam core within the joints of sandwich panels at high temperatures. At the beginning of fire exposure, the joint temperature on the unexposed surface was lower than that on the panel due to the better insulation property of air compared to the foam. However, as the joint gap increased due to ablation of the foam, the joint temperatures became higher than in the panel. A numerical simulation model has been created to investigate this behaviour. Using the aforementioned thermal model, numerical simulations have been carried out to examine the influences of possible changes to sandwich panel design on sandwich panel construction fire performance. It was suggested that if the maximum gap in the joints can be limited to 5mm, for example, by applying intumescent coating strips within the sandwich panel joints to counter the increasing gap formed due to core ablation, then the joint temperature on the unexposed surface would not exceed that of the panel surface, hence the joint would cease to be the weak link. To increase the panel fire resistance, the use of graphite particles in the PIR foam formulation may be considered to lower the contribution of radiative heat transfer within the foam cells by reducing the transmissivity of the cell walls. Graphite particles may offer considerable increases in the thermal resistance of PIR foam at high temperatures by limiting the radiation contribution which dominates heat transfer above 300oC.
96

Manipulating graphene's lattice to create pseudovector potentials, discover anomalous friction, and measure strain dependent thermal conductivity

Kitt, Alexander 22 January 2016 (has links)
Graphene is a single atomic sheet of graphite that exhibits a diverse range of unique properties. The electrons in intrinsic graphene behave like relativistic Dirac fermions; graphene has a record high Young's modulus but extremely low bending rigidity; and suspended graphene exhibits very high thermal conductivity. These properties are made more intriguing because with a thickness of only a single atomic layer, graphene is both especially affected by its environment and readily manipulated. In this dissertation the interaction between graphene and its environment as well as the exciting new physics realized by manipulating graphene's lattice are investigated. Lattice manipulations in the form of strain cause alterations in graphene's electrical dispersion mathematically analogous to the vector potential associated with a magnetic field. We complete the standard description of the strain-induced vector potential by explicitly including the lattice deformations and find new, leading order terms. Additionally, a strain engineered device with large, localized, plasmonically enhanced pseudomagnetic fields is proposed to couple light to pseudomagnetic fields. Accurate strain engineering requires a complete understanding of the interactions between a two dimensional material and its environment, particularly the adhesion and friction between graphene and its supporting substrate. We measure the load dependent sliding friction between mono-, bi-, and trilayer graphene and the commonly used silicon dioxide substrate by analyzing Raman spectra of circular, graphene sealed microchambers under variable external pressure. We find that the sliding friction for trilayer graphene behaves normally, scaling with the applied load, whereas the friction for monolayer and bilayer graphene is anomalous, scaling with the inverse of the strain in the graphene. Both strain and graphene's environment are expected to affect the quadratically dispersed out of plane acoustic phonon. Although this phonon is believed to provide the majority of graphene's very high thermal conductivity, its contributions have never been isolated. By measuring strain and pressure dependent thermal conductivity, we gain insight into the mechanism of graphene's thermal transport.
97

Development of Enhanced Cylindrical Specimen Thermal Conductivity Testing Procedure

January 2011 (has links)
abstract: The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2011
98

Synthesis and characterization of nanofluids for cooling applications

Botha, Subelia Senara January 2006 (has links)
Philosophiae Doctor - PhD / Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in numerous industrial sectors. Recently submicron and high aspect ratio particles (nanoparticles and nanotubes) were introduced into the heat transfer fluids to enhance the thermal conductivity of the resulting nanofluids. The aim of this project was to investigate the physico-chemical properties of nanofluids synthesized using submicron and high aspect ratio particles suspended in heat transfer fluids. / South Africa
99

The Phonon Monte Carlo Simulation

January 2015 (has links)
abstract: Thermal effects in nano-scaled devices were reviewed and modeling methodologies to deal with this issue were discussed. The phonon energy balance equations model, being one of the important previous works regarding the modeling of heating effects in nano-scale devices, was derived. Then, detailed description was given on the Monte Carlo (MC) solution of the phonon Boltzmann Transport Equation. The phonon MC solver was developed next as part of this thesis. Simulation results of the thermal conductivity in bulk Si show good agreement with theoretical/experimental values from literature. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
100

Medidas de permeabilidade e de condutividade termica efetiva em isolamentos termicos tipo fibra

KASSAR, EDSON 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:30:57Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:17Z (GMT). No. of bitstreams: 1 01386.pdf: 5820506 bytes, checksum: 6308c9f7dae1ed503a75ddfa5a2542db (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.1004 seconds