Spelling suggestions: "subject:"bthermal 1roperties"" "subject:"bthermal croperties""
621 |
Mixed convection in vertical rod bundlesSymolon, Paul D. January 1982 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1982 / Includes bibliographical references. / by Paul Douglas Symolon. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Mechanical Engineering
|
622 |
Testing large samples of PCM in water calorimeter and PCM used in room applications by night-air coolingBellander, Rickard January 2005 (has links)
The latent-heat-storage capacity in Phase-Change Materials can be used for storing or releasing energy within a small temperature interval. Upon the phase transition taking place in a narrow temperature span, the material takes up or releases more energy compared to sensible heat storage. For an ideal phase-change material, the transition temperature is a single value, but for the most common phase-change materials on the market, used in building applications, the transition temperature is distributed within a temperature range of several degrees. Integration of phase-change materials in building applications can be effected in several ways, for example by impregnating phase-change materials into porous building materials like concrete, wallboards, bricks or complements of the building structure. Integrating storages filled with phase-change materials makes other implementations, for instance accumulating tanks or envelopes as presented in this thesis, in an air heat exchanger. An appropriate phasetransition temperature of the supposed application is critical to the functionality of the material. For example, in cooling applications, the transition temperature of the material should be a few degrees lower than the requested comfort temperature in the building, and the opposite for heating applications. In order to assess the thermal properties and the durability of the material, a watercalorimetric equipment was developed and employed in an accelerated testing programme. The heat capacity of the material and in particular possible change in the heat capacity over time, after thermal cycling of the material, were measured. In the thermal cycling of the material from solid to liquid phase, the temperature rise and required energy supply were recorded. The testing programme was undertaken according to control procedures and documents. In order to be able to utilize the heat-storage capacity in the best way, it is necessary to gain knowledge about thermal properties of the material, especially the long-term behaviour of the material and the deterioration rates of the thermal properties. A semi-full-scale air heat exchanger based on phase-change material was developed and tested under real temperature conditions during the summer of 2004. The test results were used to compare and verify computer simulations made on a similar plant. The air heat exchanger utilises the ambient diurnal temperature swing to charge and discharge the phasechange material. The material tested in the calorimeter and in the air heat exchanger has an estimated phase-change temperature of about 24 °C. / QC 20101123
|
623 |
Evaluation of iron valence state alterations in thermally processed liquid model systemsTrayner, Elizabeth Lois January 1984 (has links)
A glucose glycine liquid model system fortified with 24 ppm of iron as either ferrous sulfate, ferric orthophosphate or ferric orthophosphate + 110 ppm ascorbic acid was thermally processed as 240, 250 and 260°F for 3, 6, 9, 12 and 15 minutes. Levels of elemental, nonelemental, soluble, total ionic and ferrous iron were measured for the model systems at each processing parameter. Data from the iron profiles were evaluated for the effect of iron salt; ascorbic acid; glucose and glycine, and processing temperature and time on changes in the iron chemistry during processing.
The ferrous sulfate model system resulted in significantly higher levels of soluble and ferrous iron. Soluble iron from the ferric orthophosphate model system increased significantly with the addition of ascorbic acid. The presence of glucose and glycine prevented formation of insoluble iron hydroxides during processing of the ferrous sulfate system, promoted solubilization and ionization of iron for the ferric orthophosphate system and restricted the enhancing effect of ascorbic acid on the ferric orthophosphate profile.
The interaction of the iron salt with the model system was stimulated by the application of heat. The insignificant correlation between process lethality values and the iron profile for each iron salt indicated that changes in the iron profile were time and temperature dependent. Kinetic parameters were calculated for all three model systems. The ferric orthophosphate iron profile was less sensitive to temperature change than either of the other two model systems. Evaluation of samples at sequential time intervals during the processing treatment allowed for a better understanding of the reaction mechanisms that occurred during processing which brought about a change in the iron profile of each model system. / Master of Science
|
624 |
Properties of nylon-6-based composite reinforced with coconut shell particles and empty fruit bunch fibresSavetlana, S., Mulvaney-Johnson, Leigh, Gough, Tim, Kelly, Adrian L. 28 December 2017 (has links)
yes / Novel natural fibre composites of nylon-6 reinforced with coconut shell (CS) particles and empty fruit bunch (EFB) fibres have been investigated. Fillers were alkali treated before melt compounding with nylon-6. Mechanical, thermal and rheological properties of composites were measured. Tensile modulus was found to improve with both fillers up to 16% for nylon-6/CS composite and 10% for nylon-6/EFB composite, whereas a moderate increase in tensile strength was observed only with CS composites. Differences in the strengthening mechanisms were explained by the morphology of the two fillers, empty fruit bunch fibres having a weaker cellular internal structure. Observation of composite morphology using SEM showed that both fillers were highly compatible with nylon-6 due to its hydrophilic nature. Both fillers were found to cause a slight drop in crystallinity of the nylon matrix and to lower melt viscosity at typical injection moulding strain rates. Moisture absorption increased with addition of both fillers.
|
625 |
Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system developmentShriky, Banah, Kelly, Adrian L., Isreb, Mohammad, Babenko, Maksims, Mahmoudi, N., Rogers, S., Shebanova, O., Snow, T., Gough, Tim 2019 December 1923 (has links)
Yes / Understanding structure-property relationships is critical for the development of new drug delivery systems. This study investigates the properties of Pluronic smart hydrogel formulations for future use as injectable controlled drug carriers. The smart hydrogels promise to enhance patient compliance, decrease side effects and reduce dose and frequency. Pharmaceutically, these systems are attractive due to their unique sol-gel phase transition in the body, biocompatibility, safety and injectability as solutions before transforming into gel matrices at body temperature. We quantify the structural changes of F127 systems under controlled temperature after flow, as experienced during real bodily injection. Empirical formulae combining the coupled thermal and shear dependency are produced to aid future application of these systems. Induced structural transitions measured in-situ by small angle x-ray and neutron scattering reveal mixed oriented structures that can be exploited to tailor the drug release profile.
|
626 |
Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite CoatingsTorgerson, Tyler B. 08 1900 (has links)
The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing. Data provided insights into tribo-oxide formation mechanisms controlling friction and wear. It was determined that the steady-state coefficient of friction (CoF) decreased from 0.41 at RT to 0.32 at 400˚C, while the wear rate increased from 0.5×10-4 mm3/N·m at RT to 3.7×10-4 mm3/N·m at 400˚C. The friction reduction is attributed primarily to the tribochemical formation of lubricious NiO on both the wear track and transfer film adhered to the counterface. The increase in wear is attributed to a combination of thermal softening of the coating and a change in the wear mechanism from adhesive to more abrasive. In addition, the coating exhibited low friction behavior during thermal cycling by restoring the lubricious NiO phase inside the wear track at high temperature intervals. Therefore, cold sprayed Ni-WC coatings are potential candidates for elevated temperature and thermally self-adaptive sliding wear applications.
|
627 |
Two-Phase Spray Cooling with Water/2-Propanol Binary Mixtures for High Heat Flux Focal SourceObuladinne, Sai Sujith 12 1900 (has links)
Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients and critical heat flux levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. Two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermo-physical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used single-component working fluids have relatively poor properties and heat transfer performance. For example, water is the best coolant in terms of properties, yet in certain applications where the system operates at low temperature ambient, it cannot be implemented due to freezing risk. The common solution for this problem is to use the antifreeze mixtures (binary mixtures of water and alcohol) to reduce the freezing point. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach.
This study has two main objectives; (1) to experimentally investigate the two-phase spray cooling performance of water/2-propanol binary mixture, and (2) to numerically investigate the performance of an advanced heat spreader featuring high and directional thermal conductivity materials for high heat flux focal sources. The first part of the study involves experimental characterization of heat transfer performance. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. The test section, made of copper, measures 10 mm x 10 mm x 2 mm with a plain, smooth surface. A cylindrical copper block, with a matching size square protrusion attached onto the back side of the test section, generates heat using cartridge heaters and simulates high heat flux source. Embedded thermocouples are used to determine the spray surface temperature. The working fluid, water/alcohol mixture, has various concentration levels of 2-propanol by mass fraction 0.0 (pure water), 0.25, 0.50, 0.879 (azeotrope) and 1.0 (pure alcohol)), representing both non-azeotropic and azeotropic cases. Spray cooling tests are performed with a constant flow rate of 5.6 ml/cm².s at subcooled temperatures (~20oC) and atmospheric pressure. Experimental procedure involves controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. The second part of the study investigates an advanced heat spreader design for thermal management of a high heat flux focal source. The heat spreader comprises of three layers: a copper layer that interfaces with the heat source, a high and directional thermal conductivity material (such as CVD diamond and Pyrolytic graphite) layer, and another copper layer that is exposed to two-phase spray cooling. The analysis applies various heat fluxes on the heat source side and the experimentally obtained heat transfer coefficients on the spray side of the spreader design to determine the temperature and heat flux distributions, and examine the potential capabilities of this configuration.
|
628 |
Design and testing of a modular hydride hydrogen storage system for mobile vehiclesSchmidt, Dennis Patrick. January 1985 (has links)
Call number: LD2668 .T4 1985 S335 / Master of Science
|
629 |
Rock bed thermal storage for concentrating solar power plantsAllen, Kenneth Guy 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, and require thermal storage to supply power on demand. At present thermal storage – usually molten salt – although functional, is expensive, and a cheaper solution is desired. It is proposed that sensible heat storage in a packed bed of rock, with air as heat transfer medium, is suitable at temperatures of 500 – 600 °C. To determine if this concept is technically feasible and economically competitive with existing storage, rock properties, packed bed pressure drop and thermal characteristics must be understood. This work addresses these topics.
No previously published data is available on thermal cycling resistance of South African rock, and there is limited data from other countries in the proposed temperature range for long-term thermal cycling, so samples were thermally cycled. There is rock which is suitable for thermal storage applications at temperatures of 500 – 600 °C. New maps of South Africa showing where potentially suitable rock is available were produced. Dolerite, found extensively in the Karoo, is particularly suitable.
Friction factors were measured for beds of different particles to determine the importance of roughness, shape, and packing arrangement. Five sets of rock were also tested, giving a combined dataset broader than published in any previous study. Limitations of existing correlations are shown. The friction factor is highly dependent on particle shape and, in the case of asymmetric particles, packing method. The friction factor varied by up to 70 % for crushed rock depending on the direction in which it was poured into the test section, probably caused by the orientation of the asymmetric rock relative to the air flow direction. This has not been reported before for rock beds. New isothermal correlations using the volume equivalent particle diameter are given: they are within 15 % of the measurements. This work will allow a techno-economic evaluation of crushed rock beds using more accurate predictions of pumping power than could previously be made.
Thermal tests below 80 °C show that bed heat transfer is insensitive to particle shape or type. A heat transfer correlation for air in terms of the volume equivalent diameter was formulated and combined with the E-NTU method. The predicted bed outlet temperatures are within 5 °C of the measurements for tests at 530 °C, showing that the influence of thermal conduction and radiation can be reasonably negligible for a single charge/discharge cycle at mass fluxes around 0.2 kg/m2s.
A novel method for finding the optimum particle size and bed length is given: The Biot number is fixed, and the net income (income less bed cost) from a steam cycle supplied by heat from the bed is calculated. A simplified calculation using the method shows that the optimum particle size is approximately 20 mm for bed lengths of 6 – 7 m. Depending on the containment design and cost, the capital cost could be an order of magnitude lower than a nitrate salt system. / AFRIKAANSE OPSOMMING: Gekonsentreerde son-energie kragstasies is n belowende manier om elektrisiteit op te wek, maar hulle is afhanklik van die son as n bron van energie. Om drywing op aanvraag te voorsien moet hulle energie stoor. Tans is termiese stoor – gewoonlik gesmelte sout – hoewel funksioneel, duur, en n goedkoper oplossing word gesoek. Daar word voorgestel dat stoor van voelbare warmte-energie in n gepakte rotsbed met lug as warmteoordrag medium geskik is by temperature van 500 – 600 °C. Om te bepaal of dié konsep tegnies gangbaar en ekonomies mededingend met bestaande stoorstelsels is, moet rotseienskappe, gepakte bed drukval en hitteoordrag verstaan word. Hierdie werk spreek hierdie aspekte aan.
Geen voorheen gepubliseerde data is beskikbaar oor die termiese siklus weerstand van Suid-Afrikaanse rots nie, en daar is beperkte data van ander lande in die voorgestelde temperatuurbereik, dus is monsters onderwerp aan termiese siklusse. Daar bestaan rots wat geskik is vir termiese stoor toepassings by temperature van 500 – 600 °C. Nuwe kaarte van Suid-Afrika is opgestel om te wys waar potensieel geskikte rots beskikbaar is. Doleriet, wat wyd in die Karoo voor kom, blyk om veral geskik te wees.
Wrywingsfaktore is gemeet vir beddens van verskillende partikels om die belangrikheid van grofheid, vorm en pak-rangskikking te bepaal. Vyf rotsstelle is ook getoets, wat n saamgestelde datastel gee wyer as in enige gepubliseerde studie. Beperkings van bestaande korrelasies word aangetoon. Die wrywingsfaktor is hoogs sensitief vir partikelvorm en, in die geval van asimmetriese partikels, pakkings metode. Die wrywingsfaktor het met tot 70 % gevarieer vir gebreekte rots, afhanklik van die rigting waarin dit in die toetsseksie neergelê is. Dit is waarskynlik veroorsaak deur die oriëntasie van die asimmetriese rots relatief tot die lugvloei rigting, en is nie voorheen vir rotsbeddens gerapporteer nie. Nuwe isotermiese korrelasies wat gebruik maak van die volume-ekwivalente partikel deursnee word gegee: hulle voorspel binne 15 % van die gemete waardes. Hierdie werk sal n tegno-ekonomiese studie van rotsbeddens toelaat wat meer akkurate voorspellings van pompdrywing gebruik as voorheen moontlik was.
Termiese toetse onder 80 °C wys dat die warmteoordrag nie baie sensitief is vir partikelvorm en -tipe nie. n Warmte-oordragskorrelasie vir lug in terme van die volume-ekwivalente deursnee is ontwikkel en met die E-NTU-metode gekombineer. Die voorspelde lug uitlaat temperatuur is binne 5 °C van die meting vir toetse by 530 °C. Dit wys dat termiese geleiding en straling redelikerwys buite rekening gelaat kan word vir n enkele laai/ontlaai siklus by massa vloeitempos van omtrent 0.2 kg/m2s.
n Oorspronklike metode vir die bepaling van die optimum partikelgrootte en bedlengte word gegee: Die Biot-getal is vas, en die netto inkomste (die inkomste minus die bed omkoste) van n stoomsiklus voorsien met warmte van die bed
word bereken. n Vereenvoudigde berekening wat die metode gebruik wys dat die optimum grootte en lengte ongeveer 20 mm en 6-7 m is. Afhangende van die behoueringsontwerp en koste, kan die kapitale koste n orde kleiner wees as dié van n gesmelte nitraatsout stelsel
|
630 |
Magnetothermal properties near quantum criticality in the itinerant metamagnet Sr₃Ru₂O₇Rost, Andreas W. January 2009 (has links)
The search for novel quantum states is a fundamental theme in condensed matter physics. The almost boundless number of possible materials and complexity of the theory of electrons in solids make this both an experimentally and theoretically exciting and challenging research field. Particularly, the concept of quantum criticality resulted in a range of discoveries of novel quantum phases, which can become thermodynamically stable in the vicinity of a second order phase transition at zero temperature due to the existence of quantum critical fluctuations. One of the materials in which a novel quantum phase is believed to form close to a proposed quantum critical point is Sr₃Ru₂O₇. In this quasi-two-dimensional metal, the critical end point of a line of metamagnetic first order phase transitions can be suppressed towards zero temperature, theoretically leading to a quantum critical end point. Before reaching absolute zero, one experimentally observes the formation of an anomalous phase region, which has unusual ‘nematic-like’ transport properties. In this thesis magnetocaloric effect and specific heat measurements are used to systematically study the entropy of Sr₃Ru₂O₇ as a function of both magnetic field and temperature. It is shown that the boundaries of the anomalous phase region are consistent with true thermodynamic equilibrium phase transitions, separating the novel quantum phase from the surrounding ‘normal’ states. The anomalous phase is found to have a higher entropy than the low and high field states as well as a temperature dependence of the specific heat which deviates from standard Fermi liquid predictions. Furthermore, it is shown that the entropy in the surrounding ‘normal’ states increases significantly towards the metamagnetic region. In combination with data from other experiments it is concluded that these changes in entropy are most likely caused by many body effects related to the underlying quantum phase transition.
|
Page generated in 0.0715 seconds