Spelling suggestions: "subject:"bthermal anda bimechanical 1roperties"" "subject:"bthermal anda bimechanical croperties""
1 |
Lightweight foamed concrete (LFC) thermal and mechanical properties at elevated temperatures and its application to composite walling systemOthuman Mydin, Md Azree January 2010 (has links)
LFC is cementatious material integrated with mechanically entrained foam in the mortar slurry which can produce a variety of densities ranging from 400 to 1600 kg/m3. The application of LFC has been primarily as a filler material in civil engineering works. This research explores the potential of using LFC in building construction, as non-load-bearing partitions of lightweight load-bearing structural members. Experimental and analytical studies will be undertaken to develop quantification models to obtain thermal and mechanical properties of LFC at ambient and elevated temperatures. In order to develop thermal property model, LFC is treated as a porous material and the effects of radiant heat transfer within the pores are included. The thermal conductivity model results are in very good agreement with the experimental results obtained from the guarded hot plate tests and with inverse analysis of LFC slabs heated from one side. Extensive compression and bending tests at elevated temperatures were performed for LFC densities of 650 and 1000 kg/m3 to obtain the mechanical properties of unstressed LFC. The test results indicate that the porosity of LFC is mainly a function of density and changes little at different temperatures. The reduction in strength and stiffness of LFC at high temperatures can be predicted using the mechanical property models for normal weight concrete provided that the LFC is based on ordinary Portland cement. Although LFC mechanical properties are low in comparison to normal weight concrete, LFC may be used as partition or light load-bearing walls in a low rise residential construction. To confirm this, structural tests were performed on a composite walling system consisting of two outer skins of profiled thin-walled steel sheeting with LFC core under axial compression, for steel sheeting thicknesses of 0.4mm and 0.8mm correspondingly. Using these test results, analytical models are developed to calculate the maximum load-bearing capacity of the composite walling, taking into consideration the local buckling effect of the steel sheeting and profiled shape of the LFC core. The results of a preliminary feasibility study indicate that LFC can achieve very good thermal insulation performance for fire resistance. A single layer of 650 kg/m3 density LFC panel of about 21 mm would be able to attain 30 minutes of standard fire resistance rating, which is comparable to gypsum plasterboard. The results of a feasibility study on structural performance of a composite walling system indicates that the proposed panel system, using 100mm LFC core and 0.4mm steel sheeting, has sufficient load carrying capacity to be used in low-rise residential construction up to four-storeys.
|
2 |
Synthesis, Molecular Weight Characterization and Structure-Property Relationships of Ammonium IonenesBorgerding, Erika Michelle 27 November 2007 (has links)
Ammonium ionenes are macromolecules with quaternized nitrogen groups in the main chain. Ionenes are commonly referred to as x,y-ionene, where x and y represent the number of methylene groups between quaternized nitrogens. Synthesis of aliphatic ammonium ionenes has been studied since the early twentieth century; however, absolute molecular weight characterization has only been performed using extensive light scattering and viscosity experiments. Performing aqueous size exclusion chromatography (SEC) on ammonium ionenes provides absolute molecular weight determinations while eliminating the need for separate viscosity and light scattering experiments. We developed a mobile phase composition that provides reliable separation of aliphatic ammonium ionenes using aqueous SEC. For the first time, we report absolute molecular weights of aliphatic ammonium ionenes using this technique.
We investigated the influence of charge density and structural symmetry on thermal and mechanical properties of ammonium 6,6-, 12,6- and 12,12-ionenes. Thermal properties were measured using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), and mechanical properties were measured using dynamic mechanical analysis (DMA) and an Instron.
Incorporating low molecular weight polymer segments into the main chain of the ionene allows tailoring of polymer characteristics. Poly (tetramethylene oxide) segments decrease hydrophilicity and increase elastomeric character. Linear PTMO based ionenes have been synthesized previously, and we were interested in how branching affected thermal and mechanical properties. We synthesized bis(dimethylamino) poly(tetramethylene oxide) segments, and subsequently, synthesized linear and branched ionenes to study the effects of topology on thermal and mechanical properties. Polymers were analyzed using DMA, DSC, TGA, SAXS, and an Instron. / Master of Science
|
3 |
Thermal stability and mechanical property of polymer layered graphite oxide compositesCerezo, Frances Therese, francestherese_cerezo@hotmail.com January 2006 (has links)
Polymer composites formed from layered fillers with high surface volume ratio show enhanced reinforcement. Graphite oxide is a high modulus material that can be separated into thin layers with high surface area. The aim of this study is to prepare polymer layered graphite oxide composites using functionalised polyolefin to enhance compatibility with various forms of layered graphite oxide in varying concentration. Functionalised polyolefins reinforced with layered graphite oxides and expanded graphite oxides were prepared using solution blending and melt blending methods. Three different mixing methods with varying shear intensity were employed to prepare polymer layered graphite oxide composites. The crystalline structure, thermal and mechanical properties of the prepared polymer layered graphite oxide composites was studied. Oxidised graphite prepared from the Staudenmaier method and its exfoliated form were dispersed in poly(ethylene-co-methyl acrylate-co-acrylic acid) (EMAA) via solution blending to prepare EMAA layered composites. The thermal stability was determined using thermogravimetric analysis. The EMAA layered composites showed higher thermal stability in comparison with pure EMAA. The mechanical properties of these EMAA layered composites were determined through dynamic mechanical analysis. Shear modulus, yield stress and storage modulus of EMAA in the presence of graphite oxide fillers decreased. A solution blending method was used to prepare poly(propylene-grafted-maleic anhydride) layered expanded graphite oxide composites (PPMA-EGO). Two types of PPMA-EGO were prepared using different mixing methods - low and high shear were employed. The effects of preparative mixing methods on the PPMA-EGO properties were investigated. The mechanical properties of PPMA-EGO obtained from dynamic mechanical analysis indicated that EGO had a reinforcing effect on the elastic behaviour of PPMA-EGO. This is due to strong interfacial adhesion between PPMA and EGO as a result of hydrogen bonding. The elastic behaviour of PPMA-EGO was affected by the surface area of graphite flakes. Low sheared PPMA-EGO elastic behaviour was found to be higher compared with that of high sheared PPMA-EGO. A melt blending method was used to prepare PPMA-EGO with varying EGO concentration. The interconnected network structure of EGO in the PPMA-EGO was not observed as shown by its scanning electron microscopy images. Thermogravimetric analysis of PPMA-EGO indicates increased decomposition temperature of the PPMA matrix. Dynamic mechanical analysis showed enhanced storage modulus of PPMA-EGO. The maximum elastic modulus of PPMA-EGO was observed at 3 %wt of EGO. The electrical conductivity of PPMA-EGO was measured only for EGO concentrations above 2 %wt. The EGO concentration was found to be the most critical factor in the enhancement of the electrical conductivity of PPMA-EGO. Wide angle X-ray diffraction analysis of all polymer layered graphite oxide composites revealed no change in interlayer spacing of graphite layers, indicating the absence of EMAA intercalation in the graphite layers. The crystallisation temperature and crystallinity of all polymer layered graphite oxide composites were determined using differential scanning calorimetry. The results indicated that graphite oxide and expanded graphite oxides acted as nucleating agents in inducing the crystallisation of functionalised polyolefin in the layered composites. However, the degree of crystallinity of functionalised polyolefin decreased in the layered composites.
|
4 |
Flame Retardancy Of Polymer NanocompositesIsitman, Nihat Ali 01 March 2012 (has links) (PDF)
This thesis is aimed to understand the role of nanofiller type, nanofiller dispersion, nanofiller geometry, and, presence of reinforcing fibers in flame retardancy of polymer nanocomposites. For this purpose, montmorillonite nanoclays, multi-walled carbon nanotubes, halloysite clay nanotubes and silica nanoparticles were used as nanofillers in polymeric matrices of poly (methyl methacrylate) (PMMA), high-impact polystyrene (HIPS), polylactide (PLA) and polyamide-6 (PA6) containing certain conventional flame retardant additives. Furthermore, the influence of nanofiller and flame retardant additives on fiber/matrix interfacial interactions was studied.
Materials were prepared by twin-screw extrusion melt-mixing and ultrasound-assisted solution-mixing techniques. Characterization of nanocomposite morphology was done by X-ray diffraction and transmission electron microscopy. Flame retardancy was investigated by mass loss cone calorimetry, limiting oxygen index measurements and UL94 standard tests. Flame retardancy mechanisms were revealed by characterization of solid fire residues by scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and X-ray diffraction. Thermal degradation and stability was studied using thermogravimetric analysis. Mechanical properties were determined by tension tests and fracture surfaces were observed under scanning electron microscope.
Influence of nanofiller type was investigated comparing the behavior of montmorillonite nanoclay and multi-walled carbon nanotube reinforced PMMA nanocomposites containing phosphorous/nitrogenous intumescent flame retardant. Carbon nanotubes hindered the formation of intumescent inorganic phosphate barrier which caused the samples to be exposed to larger effective heat fluxes during combustion. Contrarily, nanoclays physically reinforced the protective barrier without disrupting the intumescent character, thereby allowing for lower heat release and mass loss rates, and increased amounts of residue upon combustion.
Influence of nanofiller dispersion was studied comparing nanocomposite and microcomposite morphologies in montmorillonite nanoclay reinforced HIPS containing aluminum hydroxide flame retardant. Relative to microcomposite morphology, reductions in peak heat release rates were doubled along with higher limiting oxygen index and lower burning rates with nanocomposite formation. Improved flame retardancy was attributed to increased amounts of char residue and lower mass loss rates. Nanocomposite formation allowed for the recovery of tensile strength reductions caused by high loading level of the conventional flame retardant additive in polymer matrix.
Influence of nanofiller geometry was investigated for phosphorus based intumescent flame-retarded PLA nanocomposites. Fire performance was increased in the order of rod-like (1-D) < / spherical (0-D) < / < / plate-like (2-D) geometries which matched qualitatively with the effective surface area of nanoparticles in the nanocomposite. Well-dispersed plate-like nanoparticles rapidly migrated and accumulated on exposed sample surface resulting in the formation of strong aluminum phosphate/montmorillonite nanocomposite residue. Mechanical properties were increased in the order of 0-D < / 1-D < / 2-D nanofillers corresponding to the order of their effective aspect ratios in the nanocomposite.
Influence of fiber reinforcement was studied for montmorillonite nanoclay containing short-glass fiber-reinforced, phosphorus/nitrogen based flame-retarded PA6 composites. Substitution of a certain fraction of conventional additive with nanofiller significantly reduced peak heat release rate, delayed ignition and improved limiting oxygen index along with maintained UL94 ratings. Improved flame retardancy was ascribed to the formation of a nanostructured carbonaceous boron/aluminum phosphate barrier reinforced by well-dispersed montmorillonite nanolayers.
Fiber/matrix interfacial interactions in flame-retarded PA6 and HIPS containing nanoclays were investigated using a micromechanical approach, and it was found that the influence of nanoclay on the interface depends on crystallinity of polymer matrix. While the fiber/matrix interfacial strength is reduced with nanoclay incorporation into amorphous matrix composites, significant interfacial strengthening was imparted by large surface area, well-dispersed clay nanolayers acting as heterogeneous nucleation sites for the semi-crystalline matrix.
|
5 |
Molecular-dynamics Investigation Of The Dynamic Properties Of Pd And Al Metals, And Their AlloysCoruh, Ali 01 February 2003 (has links) (PDF)
The dynamic properties of Palladium (Pd) and Aluminum (Al) metals and their alloys are investigated by means of Molecular Dynamics using the Quantum Sutton-Chen force field in five different concentrations. Calculations have been carried out for liquid structures. Although this study is done for liquid structures, basic solid state properties are also investigated to prove the validity of potential parameters. Results are compared with each other and with experimental, theoretical and simulated results. Liquid state transferability of Quantum Sutton-Chen parameters have been investigated and discussed. High temperature properties, which are not easy to work experimentally, are simulated and high temperature behavior of Pd-Al alloy is investigated.
|
6 |
Preparation And Characterization Of Thermally Stable Organoclays And Their Use In Polymer Based NanocompositesAbdallah, Wissam 01 September 2010 (has links) (PDF)
The present study was aimed at exploring the purification and modification of montmorillonite rich Turkish bentonites by organic salts and their subsequent effects on the morphology (X-diffractometry, transmission electron microscopy, scanning electron microscopy), melt flow index, mechanical (Tensile, Impact) and especially thermal stability (thermal gravimetric analysis, differential scanning calorimetry) properties of polymer/organoclay nanocomposites with and without an elastomeric compatibilizer. The bentonite clay mined from Resadiye (Tokat/Turkey) was purified by sedimentation, resulting in higher cation exchange capacity and thermal stability in comparison to unpurified clay, and then used in the synthesis of six thermally stable organoclays by replacing the interlayer inorganic sodium cations with two (alkyl, aryl) phosphonium and four di-(alkyl, aryl) imidazolium surfactant cations in an attempt to overcome the problem of early decomposition of alkyl ammonium organoclays usually used in polymer nanocomposites. An optimum amount of these organoclays (wt %2) was then used in the production of Polyamide 66 and Poly(ethylene terephthalate) based nanocomposites by melt blending with the help of an optimum amount of elastomeric compatibilizer (wt %5) which also acted as impact modifier. Phosphonium organoclays were used in the production of nanocomposites for both polymers, whereas imidazolium organoclays were used with PET only.
The importance of clay purification was revealed in the removal of non-clay minerals available in the raw bentonite clay as confirmed by XRF and XRD, the significant increase in cation exchange capacity and the improved thermal stability of the purified clays as proven by TGA.
The interlayer spacing of the phosphonium organoclays ranged from 1.78 to 2.52 nm indicating arrangement between pseudo-trilayers and paraffin-type chains, while the interlayer spacing of imidazolium organoclays ranged between 1.35 nm and 1.45 nm indicating a monolayer arrangement. The effects of chemical structure (chain type), counter ion and alkyl chain length on the thermal stability of the imidazolium salts were investigated. TGA analysis showed that the thermal stability of (alkyl, aryl) phosphonium and di-(alkyl, aryl) imidazolium organoclays proved to be superior to conventionally used quaternary alkyl ammonium organoclays. Not only the thermal stability of the organoclays prevented the nanocomposite from early decomposition, but these organoclays also improved the onset decomposition temperatures of PA66 and PET nanocomposites compared to the pure polymer owing to the dominant barrier effect of the silicate layers as a result of the formation of carbonaceous-silicate char.
The reinforcement of PA66 with surface modified phosphonium organoclays and PET with surface modified phosphonium and imidazolium organoclays enhanced the mechanical and thermal properties of the binary and ternary nanocomposites. The mechanical properties were in good agreement with DSC analysis for all the PA66 and PET compositions. The presence of elastomer and organoclays promoted the nucleation process in PA66 blend, binary and ternary nanocomposites. However, the presence of elastomer and organoclay retarded the nucleation in most of the PET composites.
|
7 |
Molecular Dynamics Study Of Random And Ordered Metals And Metal AlloysKart, Hasan Huseyin 01 September 2004 (has links) (PDF)
The solid, liquid, and solidification properties of Pd, Ag pure metals and especially PdxAg1-x alloys are studied by using the molecular dynamics simulation. The effects of temperature and concentration on the physical properties of Pdx$Ag1-x are analyzed. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used as interatomic interactions which enable one to investigate the thermodynamic, static, and dynamical properties of transition metals. The simulation results such as cohesive energy, density, elastic constants, bulk modulus, pair distribution functions, melting points and phonon dispersion curves obtained for Pd, Ag and PdxAg1-x are in good agreement with the available experimental data at various temperatures. The predicted melting points of Pd, Ag and their binary alloys by using Q-SC potential parameters are closer to experimental values than the ones predicted from SC potential parameters.
The liquid properties such as diffusion constants and viscosities computed from Q-SC potentials are also in good agreement with the available experimental data and theoretical calculations. Diffusion coefficients and viscosity results calculated from simulation obey the Arrhenius equation well. The coefficients of the Arrhenius equation are given in order to calculate the self-diffusion coefficient and shear viscosity of Pd-Ag alloys at the desired temperature and concentration.
Using different cooling rates, we investigate glass formation tendency and crystallization of Pd-Ag metal alloys, by analyzing pair distribution function, enthalpy, volume, and diffusion coefficient. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Glass and crystallization temperatures are also obtained from the Wendt-Abraham parameter. The split of the second peak in the pair distribution function is associated with the glass transition. Glass forming ability increases with increasing concentration of Ag in Pd-Ag alloys.
Thermal and mechanical properties of Cu, Au metals and their ordered intermetallic alloys Cu3 Au(L12), CuAu(L10), and CuAu3(L12) are also studied to investigate the effects of temperature and concentration on the physical properties of Cu-Au alloys. The simulation results such as cohesive energy, lattice parameter, density, elastic constants, bulk modulus, heat capacity, thermal expansion, melting points, and phonon dispersion curves are in good agreement with the available experimental and theoretical data at various temperatures.
The Q-SC potential parameters are more reliable in determining physical properties of metals and their random and ordered alloys studied in this work
|
8 |
Influence du procédé de coulage-congélation sur la microstructure et les propriétés de matériaux / Influence of the freeze casting process on the microstructure and the materials propertiesDe Marcos, Anthony 16 December 2014 (has links)
Au cours de ce travail, l’objectif est d’étudier les liens entre les paramètres du procédé de séchage, la microstructure et les propriétés d’usage du matériau telles que la conductivité thermique et le module d’Young. L’étude a été effectuée sur des matériaux poreux à base d’alumine, oxyde modèle, et à base de bentonite, minéral argileux. Le procédé de séchage utilisé est le procédé de coulage-congélation, qui permet d’obtenir une microstructure orientée et de fabriquer des matériaux anisotropes. L’origine de cette anisotropie provient de la microstructure des échantillons, essentiellement la forme des pores. Les résultats obtenus ont permis de souligner l’importance des paramètres de séchage sur l’anisotropie et les propriétés d’usage du matériau considéré. Par exemple, des valeurs très faibles de la conductivité thermique (0,045 W.m-1.K-1 pour 98 % de porosité) ont été obtenues pour les matériaux à base de bentonite, tout en étant manipulables. / The aim of this thesis is to correlate the shaping process parameters, the microstructure and the material properties, like thermal conductivity and Young modulus. The materials used in this study are alumina and a bentonite, a clay material. The shaping process used is the freeze-casting, which permit to obtain a textural microstructure and anisotropic materials. The origin of this anisotropy is the samples microstructure, in particularly the pores shape. The results highlight the importance of the freeze-casting parameters on the anisotropy and on materials properties. For example, very low values for the thermal conductivity (0,045 W. m-1.K-1 for a porosity of 98 %) are obtained for bentonite material, and they are handleable.
|
9 |
Fire resistance of metal framed historical structuresMaraveas, Chrysanthos January 2015 (has links)
This thesis focuses on fire resistance of 19th century cast iron framed structures. Based on material property data obtained from a comprehensive literature review, upper and lower bound relationships of the thermal and mechanical properties of 19th century fireproof floor construction materials have been derived. Because these materials have large variability, a sensitivity analysis has been undertaken to investigate the most effective ways of representing such variability. The sensitivity analysis has indicated that the elevated mechanical properties of cast iron should be reliably quantified. The thermal expansion of cast iron can be taken as equal to that of steel as in EN1993-1-2. Variabilities in other material properties have modest effects on fire resistance of cast iron structures and can be safely modeled according the Eurocode material models for similar modern materials (using thermal properties of modern steel for cast iron, using thermal properties of modern concrete for the insulation materials of cast iron structures). In order to resolve some of the uncertainties in mechanical properties of cast iron at elevated temperatures, a total of 135 elevated temperature tests have been performed, including tension and compression tests, transient state and steady state tests, tests after cooling down and thermal expansion tests. These test results have been used to establish the elevated temperature stress-strain-temperature relationships in tension and compression. Afterwards, calculation methods are developed to calculate the bending resistance of cast iron beams and compression resistance of cast iron columns at elevated temperatures. For cast iron beams, a fibre model has been developed to calculate elevated temperature moment capacity of cast iron beams in jack arch construction, taking into consideration non-uniform temperature distributions in the cross-section. The fibre model divides the cross section into a large number of fine layers and for a given curvature and neutral axis position calculates the strain, the temperature, the stress and the force of each layer. It has been found that under historically applied load, the fire resistance of such beams can be 60 minutes or higher. The Monte Carlo simulation method has been used to take into account the variabilities of important mechanical properties of cast iron at elevated temperatures; Young’s modulus, 0.2% proof stress, ultimate strength, corresponding strain at ultimate strength and failure strain in tension and Young’s modulus, proportional limit and 0.2% proof stress in compression. This has enabled material safety factors of 1.50, 2.50, 4.50 and 5.50 to be proposed for target failure probabilities of 10-1, 10-2, 10-3 and 10-4 respectively. For cast iron columns, a finite element model, built using the commercial software ABAQUS, has been used to examine the effects of changing different design parameters (column slenderness, member imperfection, cross section imperfection, degree of axial restraint, load factor and load eccentricity) on fire resistance of cast iron columns. Validation of the finite element model was by comparison of the simulation results against six fire resistance tests, three on unprotected and three on protected cast iron columns. The results of this numerical parametric study indicate that the fire resistance of cast iron columns is generally higher than that of modern steel columns because the applied loads on cast iron columns are lower and cast iron columns have thicker sections than modern steel columns. Comparison of the numerical parametric study results with the calculation results using the steel column design method in EN1993-1-2 has found that the EN 1993-1-2 calculation results are generally on the safe side.
|
10 |
Harnessing boron reactivity for the synthesis of dynamic and reversible polymer networks / Synthèse de réseaux polymères dynamiques réversibles utilisant diverses réactivités du boreBrunet, Juliette 04 October 2019 (has links)
Ces travaux de thèse portent sur l’élaboration et l’étude des propriétés thermomécaniques de polymères dynamiques incorporant des dérivés borés. Tout en appliquant ce concept sur une variété d’architectures macromoléculaires : copolymères fonctionnels, briques di- et tri-fonctionelles, deux réactivités distinctes du bore ont été étudiées et exploitées. Une large gamme de méthodes de caractérisation a été utilisée pour mener à bien ce projet : spectroscopies FTIR et RMN sous différents stimuli, ainsi que de nombreuses analyses thermiques et mécaniques. Dans un premier temps, nous avons considéré la formation de paires de Lewis frustrées entre des acides de Lewis (organoboranes) et des bases de Lewis (amines et phosphines) stériquement encombrés, cette interaction pouvant être fortement modulée par la participation d’un troisième composé tels que des molécules de gaz. Ainsi, nous avons été capables de former des réseaux dynamiques réticulables de façon réversible avec le dioxyde de carbone. Dans un second temps, nous avons mis en évidence une nouvelle réactivité dans les esters boroniques cycliques impliquant une ouverture de cycle à haute température, assistée par la présence de nucléophiles. Cette réaction a été mise à profit pour former des polymères réticulés dynamiquement, pouvant atteindre des températures de transition vitreuse jusqu’à 220°C et dé-réticulables par dilution avec un bon solvant du polymère (apolaire). Cette réactivité a été appliquée à une variété de polymères accessibles par copolymérisation radicalaire (styrène, éthylène, acétate de vinyle, acrylate de butyle) ou par post-fonctionnalisation de polymères commerciaux (polybutadiène) / This thesis focuses on the development and study of thermomechanical properties of dynamic polymers incorporating borylated derivatives. While applying this concept to a variety of macromolecular architectures: functional copolymers, di- and tri-functional bricks, two distinct reactivities of boron have been explored. A wide range of characterization methods has been used to carry out this project: FTIR and NMR spectroscopies under numerous stimuli, as well as many thermal and mechanical analyses. In a first step, we considered the formation of Frustrated Lewis Pairs between Lewis acids (organoboranes) and Lewis bases (amines and phosphines) sterically hindered, as this interaction can be strongly modulated by the participation of a third compound such as gas molecules. Thus, we have been able to form dynamic networks reversibly crosslinkable with carbon dioxide. In a second step, we demonstrated a new reactivity in cyclic boronic esters involving a ring-opening at high temperature, assisted by the presence of nucleophiles. This reaction has been used to form dynamically crosslinked polymers, which can reach glass transition temperatures up to 220°C and de-crosslinkable by dilution in a good (apolar) polymer solvent. This reactivity has been applied to a variety of polymers accessible by radical copolymerization (styrene, ethylene, vinyl acetate, butyl acrylate) or by post-functionalization of commercial polymers (polybutadiene)
|
Page generated in 0.1294 seconds