Spelling suggestions: "subject:"athermal barrier coating (tbc)"" "subject:"bthermal barrier coating (tbc)""
1 |
Nízkocyklová únava niklové superslitiny IN713LC s TBC vrstvou za vysokých teplot / Low cycle fatigue of nickel superalloy IN713LC with TBC layer at high temperaturesMachala, Jan January 2013 (has links)
This thesis deals with the low cycle fatigue nickel-based superalloy IN713LC with applied TBC barrier at high temperature. The theoretical part is divided into four sections. The first one focuses on description of fatigue damage. The second one provides the basic characteristics of nickel-based superalloys. The third section describes the use of the surface layers - diffusion layers and thermal barriers and the fourth section deals with the influence of these layers on fatigue properties. Experimental part is focused on the evaluation of low cycle fatigue tests and on the explanation of the mechanisms of initiation and propagation of fatigue cracks. For the experimental part, fatigue samples were prepared by vacuum precision investment casting. TBC barrier was applied by atmospheric plasma spraying and consists of two sublayers - the lower metallic bond coating type CoNiCrAlY and top ceramic coating type YSZ. Low cycle fatigue tests were conducted under strain control at controlled temperature of 900 ° C. Fractographical analysis of fracture surfaces was carried out by using light and electron microscopy. Effect of applied barrier to fatigue life was determined - the parameters of Manson-Coffin and Basquin curve. A cyclic stress-strain curve was also obtained. The curves softening / hardening and number of transit cycles were determined. The obtained parameters and values from fatigue tests were compared with available data from fatigue tests of superalloy IN713LC without the layer, as applied AlSi type diffusion layer, at high temperatures. The initiation site on the fracture surfaces was determined within the fractographic evaluation and the influence of the layer on the initiation and propagation of fatigue cracks was discussed. A helpful tool was the assessment of longitudinal sections using scanning electron microscopy.
|
2 |
High Performance Thermal Barrier Coatings On Additively Manufactured Nickel Base Superalloy SubstratesTejesh Charles Dube (8812424) 19 February 2024 (has links)
<p>Thermal barrier coatings (TBCs) made of low-thermal-conductivity ceramic topcoat, metallic bond coat and metallic substrate, have been extensively used in gas turbine engines for thermal protection. Recently, additive manufacturing (AM) or 3D printing techniques have emerged as promising manufacturing techniques to fabricate engine components. The motivation of the thesis is that currently, application of TBCs on AM’ed metallic substrate is still in its infancy, which hinders the realization of its full potential.</p>
<p>The goal of this thesis is to understand the processing-structure-property relationship in thermal barrier coating deposited on AM’ed superalloys.</p>
<p>The APS method is used to deposit 7YSZ as the topcoat and NiCrAlY as the bond coat on TruForm 718 substrates fabricated using the direct metal laser sintering (DMLS) method. For comparison, another TBC system with the same topcoat and bond coat is deposited using APS on wrought 718 substrates. For thermomechanical property characterizations, thermal cycling, thermal shock (TS) and jet engine thermal shock (JETS) tests are performed for both TBC systems to evaluate thermal durability. Microhardness and elastic modulus at each layer and respective interfaces are also evaluated for both systems. Additionally, the microstructure and elemental composition are thoroughly studied to understand the cause for better performance of one system over the other.</p>
<p>Both TBC systems showed similar performance during the thermal cycling and JETS test but TBC systems with AM substrates showed enhanced thermal durability especially in the case of the more aggressive thermal shock test. The TBC sample with AM substrate failed after 105 thermal shock cycles whereas the one with wrought substrate endured a maximum of 85 cycles after which it suffered topcoat delamination. The AM substrates also demonstrated an overall higher microhardness and elastic modulus except for post thermal cycling condition where it slightly underperformed. This study successfully demonstrated the use of AM built substrates for an improved TBC system and validated the enhanced thermal durability and mechanical properties of such a system.</p>
<p>A modified YSZ TBC architecture with an intermediate Ti3C2 MXene layer is proposed to improve the interfacial adhesion at the topcoat/bond coat interface to improve the thermal durability of YSZ</p>
<p>12</p>
<p>TBC systems. First principles calculations are conducted to study the interfacial adhesion energy in the modified and conventional YSZ TBC systems. The results show enhanced adhesion at the bond coat/MXene interface. At the topcoat/MXene interface, the adhesion energy is similar to the adhesion energy between the topcoat and bond coat in a conventional YSZ TBC system.</p>
<p>An alternative route is proposed for the fabrication of YSZ TBC on nickel base superalloy substrates by using the SPS technology. SPS offers a one-step fabrication process with faster production time and reduced production cost since all the layers of the TBC system are fabricated simultaneously. Two different TBC systems are processed using the same heating protocol. The first system is a conventional TBC system with 8YSZ topcoat, NiCoCrAlY bond coat and nickel base superalloy substrate. The second system is similar to the first but with an addition of Ti3C2 MXene layer between the topcoat and the bond coat. Based on the first principles study, addition of Ti3C2 layer enhances the adhesion strength of the topcoat/bond coat interface, an area which is highly susceptible to spallation. Further tests such as thermal cycling and thermal shock along with the evaluation of mechanical properties would be carried out for these samples in future studies to support our hypothesis.</p>
|
3 |
Modeling and design of a physical vapor deposition process assisted by thermal plasma (PS-PVD) / Modélisation et dimensionnement d'un procédé de dépôt physique en phase vapeur assisté par plasma thermiqueIvchenko, Dmitrii 20 December 2018 (has links)
Le procédé de dépôt physique en phase vapeur assisté par plasma thermique (PS-PVD) consiste à évaporer le matériau sous forme de poudre à l’aide d’un jet de plasma d’arc soufflé pour produire des dépôts de structures variées obtenus par condensation de la vapeur et/ou dépôt des nano-agrégats. Dans le procédé de PS-PVD classique, l’intégralité du traitement du matériau est réalisée dans une enceinte sous faible pression, ce qui limite les phénomènes d’évaporation ou nécessite d’utiliser des torches de puissance importante. Dans ce travail, une extension du procédé de PS-PVD conventionnel à un procédé à deux enceintes est proposée puis explorée par voie de modélisation et de simulation numérique : la poudre est évaporée dans une enceinte haute pression (105 Pa) reliée par une tuyère de détente à une enceinte de dépôt basse pression (100 ou 1 000 Pa), permettant une évaporation énergétiquement plus efficace de poudre de Zircone Yttriée de granulométrie élevée, tout en utilisant des torches de puissance raisonnable. L’érosion et le colmatage de la tuyère de détente peuvent limiter la faisabilité d’un tel système. Aussi, par la mise en oeuvre de modèles numériques de mécaniquedes fluides et basé sur la théorie cinétique de la nucléation et de la croissance d’agrégats, on montre que, par l’ajustement des dimensions du système et des paramètres opératoires ces deux problèmes peuvent être contournés ou minimisés. En particulier, l’angle de divergence de la tuyère de détente est optimisé pour diminuer le risque de colmatage et obtenir le jet et le dépôt les plus uniformes possibles à l'aide des modèles susmentionnés, associés à un modèle DSMC (Monte-Carlo) du flux de gaz plasmagène raréfié. Pour une pression de 100 Pa, les résultats montrent que la barrière thermique serait formée par condensation de vapeur alors que pour 1 000 Pa, elle serait majoritairement formée par dépôt de nano-agrégats. / Plasma Spray Physical Vapor Deposition (PS-PVD) aims to substantially evaporate material in powder form by means of a DC plasma jet to produce coatings with various microstructures built by vapor condensation and/or by deposition of nanoclusters. In the conventional PS-PVD process, all the material treatment takes place in a medium vacuum atmosphere, limiting the evaporation process or requiring very high-power torches. In the present work, an extension of conventional PS-PVD process as a two-chamber process is proposed and investigated by means of numerical modeling: the powder is vaporized in a high pressure chamber (105 Pa) connected to the low pressure (100 or 1,000 Pa) deposition chamber by an expansion nozzle, allowing more energetically efficient evaporation of coarse YSZ powders using relatively low power plasma torches. Expansion nozzle erosion and clogging can obstruct the feasibility of such a system. In the present work, through the use of computational fluid dynamics, kinetic nucleation theory and cluster growth equations it is shown through careful adjustment of system dimensions and operating parameters both problems can be avoided or minimized. Divergence angle of the expansion nozzle is optimized to decrease the clogging risk and to reach the most uniform coating and spray characteristics using the aforementioned approaches linked with a DSMC model of the rarefied plasma gas flow. Results show that for 100 Pa, the thermal barrier coating would be mainly built from vapor deposition unlike 1,000 Pa for which it is mainly built by cluster deposition.
|
4 |
Synchrotron X-Ray Diffraction and Piezospectroscopy used for the Investigation of Individual Mechanical Effects from Environmental Contaminants and Oxide Layer Undulations in Thermal Barrier CoatingsSiddiqui, Sanna 01 January 2014 (has links)
The durability of Thermal Barrier Coatings (TBCs) used on the turbine blades of aircraft and power generation engines has been known to be affected by sand particle ingression comprised of Calcium-Magnesium-Alumina-Silicate (CMAS). Previous studies have shown that these effects present themselves through variations in the thermomechanical and thermochemical properties of the coating. This study investigated the impact of CMAS ingression on the Yttria Stabilized Zirconia Topcoat (YSZ) and Thermally Grown Oxide (TGO) strain in sprayed Thermal Barrier Coating (TBC) samples of varying porosity with and without CMAS ingression. In-Situ Synchrotron X-ray Diffraction measurements were taken on the sample under thermal loading conditions from which the YSZ and TGO peaks were identified and biaxial strain calculations were determined at high temperature. Quantitative strain results are presented for the YSZ and TGO during a thermal cycle. In-plane strain results for YSZ near the TGO interface for a complete thermal cycle are presented, for a 6% porous superdense sample with CMAS infiltration. The outcomes from this study can be used to understand the role of CMAS on the strain tolerance of the TBC coating. It is well known that under engine operational conditions the development of the TGO layer, with large critical stresses, has been linked to failure of the coating. The growth of the TGO manifests as undulations in a series of peaks and troughs. Understanding the mechanics of the oxide layer at these locations provides significant information with respect to the failure mechanisms of the TBC coating. This study investigated the stress at the peak and trough of a TGO undulation for a cycled Dense Vertically Cracked (DVC) plasma sprayed TBC sample through photo-luminescence (PL) spectroscopy. High resolution nanoscale stress maps were taken nondestructively in the undulation of the TGO. Preliminary results from first line mapping of TGO peak and trough scan, at a resolution of 200 nm, have shown a non-uniform TGO stress variation. The results obtained from this study can be used to understand the stress variation in the peak and trough of a DVC sample's TGO undulation and how it contributes to the life of the TBC coating.
|
5 |
<b>Pushing the Limit of High-Temperature Thermal Metamaterials</b>Ali R Jishi (19190992) 22 July 2024 (has links)
<p dir="ltr">Thermal Barrier Coatings (TBC) represent the key technology enabling greater efficiency and performance in jet engines and gas turbines. In modern engines, TBCs allow gas temperatures to exceed 1700°C, well above the point at which the structural alloys lose their strength. By insulating the underlying nickel-alloy components from the extreme heat generated during combustion, TBCs support a larger temperature gradient. </p><p dir="ltr">As operating temperatures are further increased to improve performance, thermal radiation becomes a more substantial carrier of heat. However, conventional TBCs are designed to provide a single barrier against only the phonon-mediated conductive heat flux, leaving the photonic radiative heat transfer largely unmitigated. We propose a Thermal Dual Barrier Coating (TDBC) to simultaneously suppress the phononic and photonic heat transfer by integrating a reflective thermal metamaterial into an independent phonon-optimized TBC.</p><p dir="ltr">The main obstacle to achieving the TDBC is in the selection of adequate reflective materials in the metamaterial. Conventional refractory metals that demonstrate the greatest stability and functionality in thermal metamaterials show instability under harsher environments. In our work, we identified and studied the key ideas, metrics, and challenges in metamaterials based on alternating layers of refractory metals and oxides for TDBC applications.</p><p dir="ltr">Our work emphasizes oxidation as a crucial degradation factor that is unavoidable in our assessment of the metamaterials. In formulating this problem, we bring the concept of oxidation-resistance through passivation to the forefront of material selection. We emphasize the passivative and oxidative properties of the metallic layer as a critical determinant in overall stability. In our work, we assess the enhancements in stability brought via passivation through the Pilling-Bedworth Ratio. We then propose the use of metal silicides in metamaterials as an overlooked class of oxidation-resistant IR reflective materials that operate through a more complex passivation method. We demonstrate strong stability in the structural integrity as well as the infrared responses of the metamaterials at up to 1200°C in atmospheric and oxidative environments.</p><p dir="ltr">After establishing the viability of metal silicides in wide-area thin films, we explore their viability in more complex thermal structures. We fabricate metal silicide metasurfaces for directional thermal emission. We demonstrate a grating structure that exhibits enhanced structural stability and maintains directional modes in the mid-IR after annealing at 1000°C.</p>
|
6 |
Controlling Thermal Transport with Thermal MetamaterialsZixin Xiong (10693287) 05 March 2025 (has links)
<p dir="ltr">To ensure electronic devices and systems operate at appropriate temperatures, efficient heat conductors are required to move the heat away from hot spots. On the other hand, to protect components with different thermal management needs in compact electronic and thermal systems and devices, thermally insulating materials are required. Moreover, many devices, such as batteries, operate effectively in a relatively narrow temperature range, hence they require thermal regulation where cooling is needed when the ambient is hot and insulation is needed when the ambient is cold. Overall, such systems and devices are subject to complex thermal challenges such as self-heating, over-heating, or over-cooling, which requires materials used for thermal management to be more versatile and even dynamic. This dissertation addresses three such thermal management challenges with the development of novel thermal metamaterials.</p><p dir="ltr">This dissertation first develops multi-layer thermal barrier coatings for thermal insulation in high temperature applications. In aerospace, higher inlet temperature of turbines enable higher power and efficiency. Thermal barrier coatings protect turbine blade alloys and push the limit of the operation temperature. Previously, doping has been used to improve certain properties and multi-layer films composed of different materials have been studied to combine their outstanding functions into a single system. However, the thermal transport properties of the optimum multi-layered systems have not been well understood. The author worked with a multidisciplinary research group to design a multi-layer TBC with optimized thermal and optical properties to protect turbine blades by reducing heat transfer through conduction and radiation. The thermal properties of the multi-layer stacks and the constituent materials are characterized using time-domain thermoreflectance from room temperature to 500 degree Celsius. The results for the individual materials agree well with literature reported data. Data for the multi-layer TBC is compared with predictions based on a thermal resistance network model with bulk thermal conductivity of each layer obtained by lattice dynamics and anharmonic phonon scattering calculations. </p><p dir="ltr">Going beyond thermal insulation, this dissertation then demonstrates a bi-layer anisotropic material for heat spreading in one direction while insulation in the vertical direction for thermal management of heterogeneous integration. Cooling of heterogeneous integrated electronic devices present unique challenges due to high power density, closely placed components, and limited space for installation in a compact package. Thermal issues such as thermal crosstalk and differences in operation temperature of adjacent components do not present in flip-chip and cannot be easily solved by increasing cooling power of the heat sink. In this dissertation, a bi-layer metamaterial with heat spreader and thermal diode functions is designed, fabricated, and tested. The designed bi-layer metamaterial demonstrates superior anisotropic ratio and outperforms conventional epoxy underfill material in regulating memory and logic die temperatures in a compact 3D IC package in numerical simulations and a benchtop experimental demonstration.</p><p dir="ltr">Finally, this dissertation goes beyond static thermal management approaches and pursues active thermal management, using continuously tunable thermal switches between conduction and insulation. For instance, batteries, such as those in electric vehicles, have a strict operational temperature range for the best performance and safety considerations. Thermal switches and regulators enable tuning of thermal resistance and change between insulating and conducting behavior. One promising approach is a continuously-tunable thermal switch based on compressible graphene/polymer composite foam to regulate transport through a material. In this dissertation, a model is developed to understand the switching mechanism of thermal conductivity of porous foam and provide insight for the search and design of a porous material with higher intrinsic thermal conductivity and switching ratio. The model is validated through molecular dynamic simulations, finite element analysis, and experimental demonstration using polyurethane foam.</p>
|
Page generated in 0.105 seconds