• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 80
  • 46
  • 45
  • 34
  • 10
  • 8
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 153
  • 110
  • 101
  • 98
  • 97
  • 78
  • 75
  • 61
  • 50
  • 46
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Možnosti využití netradičních surovin pro výrobu vakuových tepelných izolací s extrémě nízkou hodnotou tepelné vodivosti / Possibilities of use of non traditional raw materials for the manufacture of the vacuum thermal insulation with extremely low thermal conductivity

Kováriková, Růžena January 2018 (has links)
The thesis deals with the study of the behavior of advanced insulating materials on the basis of secondary raw materials and the possibilities of their use in the production of vacuum insulation using in the construction and industry. The work will be devoted to possible raw material resources, problems of long-term behavior of insulators on the basis of selected secondary raw materials under reduced pressures as well as economic evaluation of the competitiveness of alternative insulators on the building market in the field of vacuum insulation.
252

Stanovení anizotropie tepelné vodivosti polymerních chladičů pro chlazení elektroniky / Determination of thermal conductivity anisotropy of polymeric heatsinks for electronics

Brachna, Róbert January 2021 (has links)
The master's thesis focuses on creating a numerical model of a polymeric heat sink with emphasis on its significant thermal conductivity anisotropy. This anisotropy is caused by highly thermally conductive graphite filler. Its final orientation is given by the melt flow inside the mould cavity during injection molding. The numerical model is created on the basis of a heat sink prototype subjected to experimental measurements, whose physical conditions are reliably replicated by the model. The determination of anisotropy is divided into two parts. The qualitative part is based on the fracture analysis of the heat sink prototype and determines the principal directions of the conductivity tensor in individual sections of the geometry. The computation of principal conductivities falls into the quantitative part, in which this task is formulated as an inverse heat conduction problem. The input data for the proposed task are experimentally obtained temperatures at different places of the geometry. The values of principal conductivities are optimized to minimize the difference between the measured and simulated temperatures.
253

Strukturní a petrofyzikální charakterizace granitu vhodného pro ukládání radioaktivního odpadu / Structural and Petrophysical Characterisation of Granite Intended for Radioactive Waste Stocking

Staněk, Martin January 2013 (has links)
Structural and petrophysical analysis have been conducted within the Melechov massif with focus on structures controlling the porosity, permeability and thermal conductivity of the rock. The structure of the massif has been constrained based on extensive dataset including AMS and field structural measurements of ductile and brittle structures. Maps and stereograms have been constructed to display the magnetic fabrics and the fracture system of the studied massif. The fracture system of the massif has been described by two principal and two supplementary sets of joints and by faults formed mainly by joint reactivation or less frequently formed as shear fractures. The measured petrophysical data have been used to characterize the effect of fracturing and alteration on pore space geometry and in turn on permeability, thermal conductivity and elastic properties of the studied granite. Distinct petrophysical properties have been identified for pristine granite, for fractured fresh granite as well as for fractured granite altered by Fe-oxide, chlorite and clay minerals. Relations between the measured petrophysical properties have been explained in terms of evolution of the rock pore space. A detailed microstructural study combined with multidirectional P-wave velocity measurements at high confining pressure and...
254

Experimental and numerical studies of electrothermal phenomena in micro-scale thermoelectric systems

Lara Ramos, David Alberto 19 March 2021 (has links)
In recent decades the development of technologies capable to offer highly localized and precise temperature control has received increasing attention due to their relevance and applicability in numerous engineering fields. Multiple scientific papers have been written that focus on the enhancement of the performance of thermoelectric materials and micro-devices. This Ph.D. thesis in the field of Mechanical Engineering pursues three main research goals regarding electrothermal phenomena: (1) To provide an optimization design strategy for micro-thermoelectric coolers by analyzing the interplay between electrical and thermal fluxes during device operation. (2) To analyze the suitability of a device, based on micro-thermoelectric coolers, for controlling the thermal environment in microbiological systems. (3) To develop an experimental technique, based on optical pump-probe thermal imaging, to extract the thermal conductivity anisotropy of thin films. For this purpose, numerical simulations and experiments were carried out. The results show, that the design of micro-thermoelectric devices must take into account the impact of parameters that are typically neglected in the construction of macro scale devices. Poorly designed parameters, such as the metallic contacts, the distance between thermoelectric elements and their interaction with the substrate, carry severe reductions of the performance of micro-thermoelectric devices. It is demonstrated that the optimal performance is achieved when the thermoelectric legs are properly dimensioned, so that a balance of the Fourier and Joule fluxes is reached. Numerical analyses prove that micro-thermoelectric coolers offer a feasible alternative to overcome the current spatial and temperature limitations of conventional technologies and therefore enable to investigate the thermal environment of biological systems at the micro-scale. Guidelines for the implementation of the experimental platform are provided. The evaluation of the numerical and experimental data proves that optical pump-probe thermal imaging is suitable to characterize both the in-plane and the through-plane thermal conductivity of thin films. The experimental conditions to extract the anisotropy of the sample under study are determined. The outcome of this work yields new insights into electrothermal phenomena at the micro-scale and thus creates new routes in the design, fabrication and characterization of micro- thermoelectric materials and devices.:Acknowledgements IV Erklärung der Urheberschaft VI Summary VII Zusammenfassung VIII Table of content IX List of figures XI List of tables XIV Abbreviations and symbols XV 1 Introduction 1 1.1 Motivation 1 1.2 Outline of the thesis 4 1.2.1 Chapter 2 - Fundamentals 4 1.2.2 Chapter 3 - Design guidelines of micro-thermoelectric coolers 4 1.2.3 Chapter 4 - Development of a platform for biological systems experimentation 4 1.2.4 Chapter 5 - Development of a technique for thermal transport characterization in thin films 5 1.2.5 Chapter 6 - Main conclusion and future research 5 1.3 Main research objectives 5 2 Fundamentals 7 2.1 Thermoelectric phenomena 7 2.2 Performance estimation of micro-thermoelectric coolers 10 2.3 Finite element modelling 12 2.3.1 Introduction to finite element modelling 12 2.3.2 Finite element modelling of thermoelectric phenomena 17 2.4 Thermoreflectance imaging microscopy 19 3 Design guidelines of micro-thermoelectric coolers 26 3.1 Introduction 26 3.2 Micro-thermoelectric coolers: an alternative for thermal management 28 3.3 Analysis approach 29 3.3.1 Input current optimization 31 3.3.2 Metallic contacts 32 3.3.3 Leg pair geometry 35 3.3.4 Fill factor 38 3.3.5 Experimental characterization of µTECs 41 3.4 Summary 44 4 Development of a platform for biological systems experimentation 46 4.1 Introduction 46 4.2 Thermal analysis on biological systems 48 4.3 Platform conceptual proposal 50 4.4 Analysis approach 52 4.4.1 Input current optimization 52 4.4.2 Fill material 54 4.4.3 Thermotaxis 55 4.4.4 Top material 56 4.4.5 Cold spot optimization 58 4.5 Experimental platform construction 59 4.6 Summary 62 5 Development of a technique for thermal transport characterization in thin films 64 5.1 Introduction 64 5.2 Thermal anisotropy characterization in thin films 65 5.3 Experimental apparatus 66 5.4 Experimental measurements 69 5.5 Analysis approach 72 5.5.1 Thermal conductivity anisotropy analysis 76 5.5.2 Effect of the laser power on the temperature distribution 79 5.5.3 Enhancement of the system sensitivity 80 5.6 Summary 83 6 Main conclusion and future research 85 6.1 Main conclusion 85 6.2 Outlook 88 7 References 89 8 Scientific output 97 8.1 Publications in peer review journals 97 8.2 Selected conference abstracts 98 9 Curriculum vitae 99
255

Comparison of Heat-Properties and its Implications between Standard-Oil and Bio-Oil

Rückert, Marcel, Schmitz, Katharina, Murrenhoff, Hubertus January 2016 (has links)
An important criteria for optimising hydraulic systems is their size. Especially for tanks and heat exchangers oil parameters as heat capacity and thermal conductivity have a big influence on the size. Additionally, various oils differ in their parameters. Accordingly, the heat capacity and thermal conductivity need to be known. However, little research has been done. Data-sheets usually do not provide any thermal data. In this paper, the thermal conductivity is measured for varying types of hydraulic oils. The thermal conductivity is determined by a newly designed test-rig measuring the radial temperature difference in a tube at a quasi-static state using a constant heat flux. Thus, an overview over the thermal conductivity of different oils is achieved. Based on the results, a comparison between different types of fluid is made.
256

Development of a Non-Intrusive Continuous Sensor for Early Detection of Fouling in Commercial Manufacturing Systems

Fernando Jose Cantarero Rivera (9183332) 31 July 2020 (has links)
<p>Fouling is a critical issue in commercial food manufacturing. Fouling can cause biofilm formation and pose a threat to the safety of food products. Early detection of fouling can lead to informed decision making about the product’s safety and quality, and effective system cleaning to avoid biofilm formation. In this study, a Non-Intrusive Continuous Sensor (NICS) was designed to estimate the thermal conductivity of the product as they flow through the system at high temperatures as an indicator of fouling. Thermal properties of food products are important for product and process design and to ensure food safety. Online monitoring of thermal properties during production and development stages at higher processing temperatures, ~140°C like current aseptic processes, is not possible due to limitations in sensing technology and safety concerns due to high temperature and pressure conditions. Such an in-line and noninvasive sensor can provide information about fouling layer formation, food safety issues, and quality degradation of the products. A computational fluid dynamics model was developed to simulate the flow within the sensor and provide predicted data output. Glycerol, water, 4% potato starch solution, reconstituted non-fat dry milk (NFDM), and heavy whipping cream (HWC) were selected as products with the latter two for fouling layer thickness studies. The product and fouling layer thermal conductivities were estimated at high temperatures (~140°C). Scaled sensitivity coefficients and optimal experimental design were taken into consideration to improve the accuracy of parameter estimates. Glycerol, water, 4% potato starch, NFDM, and HWC were estimated to have thermal conductivities of 0.292 ± 0.006, 0.638 ± 0.013, 0.487 ± 0.009, 0.598 ± 0.010, and 0.359 ± 0.008 W/(m·K), respectively. The thermal conductivity of the fouling layer decreased as the processing time increased. At the end of one hour process time, thermal conductivity achieved an average minimum of 0.365 ± 0.079 W/(m·K) and 0.097 ± 0.037 W/(m·K) for NFDM and HWC fouling, respectively. The sensor’s novelty lies in the short duration of the experiments, the non-intrusive aspect of its measurements, and its implementation for commercial manufacturing.</p>
257

Optimization of experimental conditions of hot wire method in thermal conductivity measurements

Ma, Luyao January 2012 (has links)
This work studied the hot wire method in measuring thermal conductivity at room temperature. The purpose is to find the optimized experimental conditions to minimize natural convection in liquid for this method, which will be taken as reference for high temperature thermal conductivity measurement of slag. Combining room temperature experiments and simulation with COMSOL Multiphysics 4.2a, the study on different experimental parameters which may influence the accuracy of the measured thermal conductivity was conducted. The parameters studied were the diameter of crucible, the position of wire in the liquid, including z direction and x-y plane position, diameter of the hot wire, and current used in the measurement. In COMSOL simulations, the maximum natural convection velocity value was used to evaluate the natural convection in the liquid. The experiment results showed after 4~5 seconds of the measuring process, the natural convection already happened. Also when current was fixed, the thinner the hot wire, the larger convection it would cause. This is because thinner wire generates more heat per unit surface area. Using higher current in measuring, more heat generation improved accuracy of result but also had earlier and larger effect on convection. Both simulation and experiments showed that with the height of the liquid fixed, the smaller diameter of the crucible (not small to the level which is comparable with hot wire diameter), the higher the position in z direction (still covered by liquid), the less natural convection effect existed. But the difference was not significant. The radius-direction position change didn’t influence the result much as long as the wire was not too close to the wall.
258

Thermal Conductivity and Diffusivity Measurement Assessment for Nuclear Materials Raman Thermometry for Uranium Dioxide and Needle Probe for Molten Salts

Hartvigsen, Peter Ward 22 June 2020 (has links)
In the near future, Gen II, III, and IV nuclear reactors will be in operation. UO2 is a common fuel for reactors in each of these generations and molten salts are used as coolant/fuel in Gen IV molten salt reactors. This thesis investigates potential ways to measure thermal conductivity for these materials: Raman thermometry for UO2 and a needle probe for molten salts. Four Raman thermometry techniques are investigated in this thesis: The Two Laser Raman (TLR), Time Differential Domain Raman (TDDR), Frequency Resolved Raman (FRR), and Frequency Domain Raman (FDR). The TLR is a steady state method used with a thin film. The TDDR and FRR are both time domain methods used with thin cantilever samples. The FDR is a frequency domain method used with a thermally thick sample. Monte Carlo like simulations are performed for each technique. In the simulations, the affect introduced uncertainty has on the measurement of thermal conductivity and thermal diffusivity is measured. From the results, it is recommended that the TLR should be used for measuring thermal conductivity and the FRR used for measuring thermal diffusivity. The TDDR and FDR were heavily affected by the uncertainty which resulted in inconsistent measured thermal properties. For measuring the thermal conductivity of molten salt, a needle probe was designed and manufactured to withstand the corrosive environment found in using molten salts. The probe uses modulated joule heating and measures the temperature rise in a thermocouple. The phase delay and temperature amplitude of the thermocouple are used in determining the thermal conductivity. A new thermal quadrupole based analytical solution, which takes into consideration convection and radiation, to the temperature rise of the probe is presented. The analytical solution is verified using a numerical solution found using COMSOL. Preliminary data was obtained with the probe in water.
259

The thermal insulating effects of Quartzene® on painting systems

Zendehrokh, Arwin, Mariscal, Luis, Hunhammar, Martin, Yussuf Hassan, Ismail, Pettersson, Albert January 2020 (has links)
The European Green Deal 2020 goals for reducing emissions are enforcing rules on the energy performance of buildings. Therefore thermally insulating materials used as coatings are researched to reduce the energy emissions of buildings. An essential field of interest are nanomaterials. Traditional aerogel is a nanomaterial used for insulating applications due to its high porosity and large surface area, resulting in a longer path for heat to travel. However the cost and manufacturing process are highly energy demanding. Svenska Aerogel AB produces Quartzene® (Qz), a silica-based nanomaterial with similar properties as traditional aerogel. Qz can be incorporated into different paint systems to improve their thermal insulating properties. The aim of this project was to investigate the thermal insulating effects of Qz on three different painting systems (A, B, and C). Samples were moulded and their thermal properties were measured with TPS (Transient Plane Source). The thermal conductivity decreased as the wt% of Qz increased, up until around 10 wt% for system C. It became apparent that at higher wt%, it became harder to properly mix the samples into a good dispersion. The thermal conductivity started to increase above 10 wt%. Experiments showed that bigger particles were easier to mix into the paint than smaller.
260

Thermal Property Measurement of Thin Fibers by Complementary Methods

Munro, Troy Robert 01 May 2016 (has links)
To improve measurement reliability and repeatability and resolve the orders of magnitude discrepancy between the two different measurements (via reduced model transient electrothermal and lock-in IR thermography), this dissertation details the development of three complementary methods to accurately measure the thermal properties of the natural and synthetic Nephila (N.) clavipes spider dragline fibers. The thermal conductivity and diffusivity of the dragline silk of the N. clavipes spider has been characterized by one research group to be 151-416 W m−1 K −1 and 6.4-12.3 ×10−5 m2 s −1 , respectively, for samples with low to high strains (zero to 19.7%). Thermal diffusivity of the dragline silk of a different spider species, Araneus diadematus, has been determined by another research group as 2 ×10−7 m2 s −1 for un-stretched silk. This dissertation seeks to resolve this discrepancy by three complementary methods. The methods detailed are the transient electrothermal technique (in both reduced and full model versions), the 3ω method (for both current and voltage sources), and the non-contact, photothermal, quantum-dot spectral shape-based fluorescence thermometry method. These methods were also validated with electrically conductive and non-conductive fibers. The resulting thermal conductivity of the dragline silk is 1.2 W m−1 K −1 , the thermal diffusivity is 6 ×10−7 m2 s −1 , and the volumetric heat capacity is 2000 kJ m−3 K −1 , with an uncertainty of about 12% for each property

Page generated in 0.0895 seconds