• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 32
  • 32
  • 28
  • 22
  • 9
  • 8
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 359
  • 359
  • 196
  • 148
  • 119
  • 109
  • 76
  • 69
  • 64
  • 52
  • 52
  • 40
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Análise termoeconômica do emprego de cogeração com gás natural na indústria colombiana de laticínios / Thermoeconomic analysis of the use of cogeneration with natural gas in Colombian dairy industry

Marcela Lobo-Guerrero Larrazábal 24 September 2001 (has links)
Esse trabalho apresenta a análise energética e termo econômico comparativo para sistemas de cogeração, utilizando o gás natural, projetados para uma indústria de laticínios na Colômbia. Esses sistemas devem produzir as seguintes utilidades para os processos da planta: vapor, água gelada, ar comprimido, eletricidade, água de torre de resfriamento e água potável. Estas comparações desenvolvem-se para dois cenários: no primeiro os sistemas geram as utilidades somete para a planta e no segundo os sistemas exportam também os excedentes de eletricidade. Os sistemas de cogeração são: um ciclo de vapor com turbina a vapor de condensação e extração de vapor, um sistema baseado em uma turbina num motor a gás. Na análise termo econômica, utilizam-se os métodos de alocação de custos da igualdade e da extração para determinar os custos de produção das utilidades para cada processo na planta, na condição operacional original da planta, e para cada um dos cenários operacionais considerados das plantas de cogeração com três preços do gás natural: 2,5, 3,5 e 4,5 US$/MMBtu. Esta comparação indica a viabilidade dos sistemas de cogeração para cada cenário de produção. Os resultados demonstram que somente o sistema baseado na turbina a gás com o gás a 2,5 US$/MMBtu é economicamente viável. Recomenda-se que este sistema seja considerado na implementação da cogeração na indústria colombiana de laticínios. Com o gás ao preço atual de 4,5 US$/MMBtu, nenhum dos sistemas é economicamente viável. A sua atratividade poderia ser derivada do seu valor estratégico e da redução do impacto ambiental provocado pela operação da planta de utilidade. Se 90% do setor de laticínios implementasse a cogeração, seria possível liberar 5,81 MW para serem utilizados em outros tipos de usos finais no país. Com a venda de excedentes de eletricidade o benefício seria maior ainda. / This work presents the comparative energy and thermo economic analysis of cogeneration system, utilizing natural gas, designed for a dairy industry in Colombia. These systems must produce the following utilities for the processes of the plant: steam, chilled water, compressed air, electricity, cooling tower water and potable water. These comparisons are developed for two scenarios: in the first one the systems generate the utilities only for the plant and in the second one the systems also export electricity. The cogeneration systems are a steam cycle with extraction/ condensation steam turbine, a gas turbine based system and engine based system. In the thermo economic analysis the equality and extraction cost partition methods are utilized in order to determine the production cost of the utilities for each process in the plant, in the original operating condition of the plant, and each of the considered operating scenarios of the cogeneration plants with gas at 2,5, 3,5 and 4,5 US$/MMBtu. This comparison indicates the feasibility of the cogeneration systems for each production scenario. The results show that only the gas turbine based system with gas at 2,5 US$/MMBtu is economically feasible. Consideration of this system for the use cogeneration in the Colombian dairy industry is recommended. With the present price of 4,5 US$/MMBtu for natural gas, none of the systems is economically feasible. Its attractiveness could derive from its strategic value and from reduction of the environmental impact caused by the utilities plant operation. With 90% of the dairy industry implementing cogeneration, it would be possible to liberate 5,81 MW for utilization in the other final uses in the country. With the sale of the electricity surplus, the benefit would be even greater.
62

Analysis and optimal design of micro-energy harvesting systems for wireless sensor nodes

Lu, Xin January 2012 (has links)
Presently, wireless sensor nodes are widely used and the lifetime of the system is becoming the biggest problem with using this technology. As more and more low power products have been used in WSN, energy harvesting technologies, based on their own characteristics, attract more and more attention in this area. But in order to design high energy efficiency, low cost and nearly perpetual lifetime micro energy harvesting system is still challenging. This thesis proposes a new way, by applying three factors of the system, which are the energy generation, the energy consumption and the power management strategy, into a theoretical model, to optimally design a highly efficient micro energy harvesting system in a real environment. In order to achieve this goal, three aspects of contributions, which are theoretically analysis an energy harvesting system, practically enhancing the system efficiency, and real system implementation, have been made. For the theoretically analysis, the generic architecture and the system design procedure have been proposed to guide system design. Based on the proposed system architecture, the theoretical analytical models of solar and thermal energy harvesting systems have been developed to evaluate the performance of the system before it being designed and implemented. Based on the model's findings, two approaches (MPPT based power conversion circuit and the power management subsystem) have been considered to practically increase the system efficiency. As this research has been funded by the two public projects, two energy harvesting systems (solar and thermal) powered wireless sensor nodes have been developed and implemented in the real environments based on the proposed work, although other energy sources are given passing treatment. The experimental results show that the two systems have been efficiently designed with the optimization of the system parameters by using the simulation model. The further experimental results, tested in the real environments, show that both systems can have nearly perpetual lifetime with high energy efficiency.
63

Thermal Energy Storage in Adsorbent Beds

Ugur, Burcu January 2013 (has links)
Total produced energy in the world is mostly consumed as thermal energy which is used for space or water heating. Currently, more than 85% of total thermal energy consumption is supplied from fossil fuels. This high consumption rate increases the depletion risk of fossil fuels as well as causing a tremendous release of hazardous gases such as carbon dioxide, carbon monoxide, sulfur oxides, nitrogen oxides and particulate matter that effects both environment and human health. Those drawbacks force humankind to search for new technologies, like renewables, to reduce fossil fuel dependency on thermal energy production. Thermal energy storage in adsorbent beds is one of the resulting technologies. Adsorption is an exothermic process in which a fluid (adsorbate) diffuses into the pores of a porous solid material (adsorbent) and trapped into the crystal lattice. In this system, exothermic adsorption of water vapor from air is carried out by using hybrid adsorbent of activated alumina and zeolite. In previous studies, through literature review, this adsorbent was selected to be the most efficient adsorbent for this process due to its high water adsorption capacity, high heat of adsorption, and stability [Dicaire and Tezel, 2011]. In this study, previous studies started on this project was confirmed and pursued by trying to increase the efficiency of the process and confirm the feasibility and applicability of this system in larger scales. In this thesis, various zeolite and activated alumina hybrid adsorbents with varying zeolite compositions were screened to find the most efficient adsorbent for thermal energy storage process that gives the highest energy density. Then, existing small column was replaced with a new one, which is 16 times bigger in volume, in order to confirm the feasibility of this process at larger scales. Applicability of on-off heat release in adsorption process was also investigated by conducting several on-off experiments at different on-off time periods. Moreover, exothermic adsorption process was modeled by doing mass and energy balances in the column, water accumulation balance in the pellets, and energy balance in the column wall. Validity of this model was confirmed by comparing it with experimental results at different column volumes, and at different volumetric flow rates. Finally, an overall plant design, capital cost and thermal energy price estimations were done for adsorption thermal energy storage plants for different storage capacities and payback periods.
64

Sensitivity Analysis and Optimization of the Vertical GSHP (Ground source heat pump)

Ramanathan, Sriram January 2020 (has links)
GSHP (Ground source heat pump), uses geothermal energy which is a form of green and sustainable energy.  Geothermal energy is also a continuous source of energy, unlike wind energy. The results from this thesis work will be applicable for both GSHP that are being used for space heating, and the ones which have a bottom organic Rankine cycle. The bottom organic Rankine cycle and continuous energy production of GSHP make it a potential source for electricity generation.  The GSHP is of various types, in regard to the configuration of the pipe and their setup in the ground and also based on their grouting. In this study only vertical GSHP and with a single u-tube and water filled grout will be analyzed. The GSHP performance is based on a number of parameters including, the depth of the heat exchanging unit in the ground, other key dimensions of the unit like diameter and outer wall thickness, the fluid flow, and the type of working fluid. Therefore it becomes necessary to study the effect of all of these parameters individually and their individual effect on the energy output and the performance of the BHE. One of the thesis objectives is to establish a sensitivity analysis of the BHE based on the above mention parameters and then further optimize the design with the heat enhancement devices. The major findings of this thesis work are how shank spacing (spacing between the inlet and the outlet pipe) affects the heat transfer in the BHE. The shank spacing seems to reduce the energy output of the GSHP, this is contrary to the high conductive solid grout, where the shank spacing doesn't affect the BHE so much. The diameter of the BHE in the water-filled grout has a completely opposite effect from the solid grout. Increasing the depth of the BHE after a certain length only increases the entropy of the system which reduces the energy output. The working fluid with a higher Prandtl number helps in higher energy output. The optimization results suggest that having a deeper borehole is not very energy efficient in spite of the greater thermal gradient available at a higher depth.
65

Sorption-Based Thermal Energy Storage: Material Development and Effects of Operating Conditions

Strong, Curtis 30 April 2021 (has links)
The adverse effects of climate change, the steady depletion of fossil fuels, and the industrialization of developing countries have resulted in an increased supply and demand of renewable thermal energy. Renewable thermal energy sources like solar thermal energy produce fewer local emissions but have a temporally inconsistent power output. The consumer space heating and domestic hot water demands also vary as a function of time. This creates a mismatch between thermal energy supply and demand. Energy storage is one method of solving this problem. However, conventional methods, like hot water storage, are voluminous and can only store heat for short periods of time. Therefore, compact long-term energy storage technologies, like sorption-based energy storage systems, require research and development. The current work aims to identify and develop suitable materials for sorption-based energy storage systems and to determine the effects of operating conditions on the performance of thermal energy storage systems. A material screening study was performed, which identified MCM-41, SAPO-34, and silica gel, which are all silica-based materials, as suitable materials for sorption-based energy storage. The effects of key operating variables for a silica gel/water-vapour adsorption-based energy storage system were quantified and optimized. The optimized system energy storage density value was nearly double that of unoptimized systems. The effects of salt impregnation were investigated by impregnating different hosts with MgSO4 salt and varying the concentration of the salt in the host material. All composites were stable after three hydration/dehydration cycle. A silica gel/MgSO4 hybrid containing 33 wt% MgSO4 was found to have the highest energy storage density of all of the MgSO4-based composites. Finally, CaCl2, a promising hygroscopic for thermal energy storage was stabilized via impregnation into silica gel and encapsulation in methylcellulose. A novel synthesis technique involving the simultaneous impregnation of silica gel with CaCl2 and encapsulation in methylcellulose produced a stable encapsulated salt-in matrix composite with a high energy storage performance.
66

A screening tool for the implementation of electric and thermal energy storage systems at commercial and industrial facilities

Amerson, McKenna P 12 May 2023 (has links) (PDF)
The integration of on-site renewable systems with energy storage devices is an important topic in improving energy management for commercial buildings and industrial facilities. Energy storage technologies have the ability to impact the end user’s power reliability while creating measurable energy and cost savings. However, the potential yet remains to increase the application of these systems. To determine the feasibility of renewables and energy storage in commercial and industrial applications, a pre-screening software tool is developed using data-driven algorithms to complete an energy, cost, and carbon savings analysis of storage implementation. A case study of a standalone retail building is also modeled using a comprehensive building energy modeling software program, EnergyPlus, to simulate the energy and cost savings of a solar PV with battery energy storage systems. The work in this project collectively analyzes the future impacts of renewables integrated with energy storage for small-and-medium industrial facilities and commercial buildings.
67

Testing of Carbon Foam with a Phase Change Material for Thermal Energy Storage

Irwin, Matthew A. 24 September 2014 (has links)
No description available.
68

Experimental Testing and Mathematical Modeling of a Thermoelectric Based Hydronic Cooling and Heating Device with Transient Charging of Sensible Thermal Energy Storage Water Tank

Krishnamoorthy, Sreenidhi January 2008 (has links)
No description available.
69

STUDY OF FULLY-MIXED HYBRID THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIALS FOR SOLAR HEATING APPLICATIONS

Abdelsalam, Mohamed 11 1900 (has links)
A novel design of hybrid thermal energy storage (HTES) using Phase Change Material (PCM) was evaluated using a mathematical model. Both single and multi-tank (cascaded) storage were explored to span small to large-scale applications (200-1600 litres). The storage element was based on the concept of a fully-mixed modular tank which is charged and discharged indirectly using two immersed coil heat exchangers situated at the bottom and top of the tank. A three-node model was developed to simulate different thermal behaviors during the operation of the storage element. Experiments were conducted on full-scale 200-l single-tank sensible heat storage (SHS) and hybrid thermal energy storage (HTES) to provide validation for the mathematical model. The HTES incorporated rectangular PCM modules submerged in the water tank. Satisfactory agreement was found between the numerical results and the experimental results obtained by Mather (2000) on single and multi-tank SHS. In addition, good agreement was noticed with the experiments performed by the author on single-tank SHS and HTES at McMaster University. The developed model was found to provide high levels of accuracy in simulating different operation conditions of the proposed design of storage element as well as computational efficiency. A parametric study was undertaken to investigate the potential benefits of the HTES over the SHS, operating under idealistic conditions. The HTES can perform at least two times better than the SHS with the same volume. The PCM volume fraction, melting temperature and properties were found to have critical impact on the storage gains of the HTES. All the parameters must be adjusted such that: (1) the thermal resistance of the storage element is minimized, and (2) most of the energy exchange with the storage element takes place in the latent heat form. The performance of the single-tank HTES was evaluated numerically while operating in a solar thermal domestic hot water (DHW) system for a single-family residence. The PCM parameters were selected to maximize the solar fraction during the operation on a typical spring day in Toronto. The use of the HTES can reduce the tank volume by 50% compared to the matched size of the SHS tank. However, the HTES was found to underperform the SHS when the system was operated in different days with different solar irradiation intensities. The effect of different draw patterns was also investigated. The results indicated that thermal storage is needed only when the energy demand is out-of-phase with the energy supply. For the same daily hot water demand, different consumption profiles; ex. dominant morning, dominant evening, dominant night and dispersed consumptions, showed slight impact on the performance of the system. The concept of multi-tank (cascaded) HTES storage was explored for medium/large scale solar heating applications such as for restaurants, motels, and multi-family residences. The design was based on the series connection of modular tanks through the bottom and top heat exchangers. Each individual tank had a PCM with different melting temperature. The results showed that the cascaded storage system outperformed the single-tank system with the same total volume as a result of the high levels of sequential or tank-to-tank stratification. The use of the cascaded HTES resulted in slight improvement in the solar fraction of the system. / Thesis / Doctor of Philosophy (PhD)
70

Strategies for Managing Cool Thermal Energy Storage with Day-ahead PV and Building Load Forecasting at a District Level

Alfadda, Abdullah Ibrahim A. 09 September 2019 (has links)
In hot climate areas, the electrical load in a building spikes, but not by the same amount daily due to various conditions. In order to cover the hottest day of the year, large cooling systems are installed, but are not fully utilized during all hot summer days. As a result, the investments in these cooling systems cannot be fully justified. A solution for more optimal use of the building cooling system is presented in this dissertation using Cool Thermal Energy Storage (CTES) deployed at a district level. Such CTES systems are charged overnight and the cool charge is dispatched as cool air during the day. The integration of the CTES helps to downsize the otherwise large cooling systems designed for the hottest day of the year. This reduces the capital costs of installing large cooling systems. However, one important question remains - how much of the CTES should be charged during the night, such that the cooling load for the next day is fully met and at the same time the CTES charge is fully utilized during the day. The solution presented in this dissertation integrated the CTES with Photovoltaics (PV) power forecasting and building load forecasting at a district level for a more optimal charge/discharge management. A district comprises several buildings of different load profiles, all connected to the same cooling system with central CTES. The use of forecasting for both the PV and the building cooling load allows the building operator to more accurately determine how much of the CTES should be charged during the night, such that the cooling system and CTES can meet the cooling demand for the next day. Using this approach, the CTES would be optimally sized, and utilized more efficiently during the day. At the same time, peak load savings are achieved, thus benefiting an electric utility company. The district presented in this dissertation comprises PV panels and three types of buildings – a mosque, a clinic and an office building. In order to have a good estimation for the required CTES charge for the next day, reliable forecasts for the PV panel outputs and the electrical load of the three buildings are required. In the model developed for the current work, dust was introduced as a new input feature in all of the forecasting models to improve the models' accuracy. Dust levels play an important role in PV output forecasts in areas with high and variable dust values. The overall solution used both the PV panel forecasts and the building load forecasts to estimate the CTES charge for the next day. The presented method was tested against the baseline method with no forecasting system. Multiple scenarios were conducted with different cooling system sizes and different CTES capacities. Research findings indicated that the presented method utilized the CTES charge more efficiently than the baseline method. This led to more savings in the energy consumption at the district level. / Doctor of Philosophy / In hot weather areas around the world, the electrical load in a building spikes because of the cooling load, but not by the same amount daily due to various conditions. In order to meet the demand of the hottest day of the year, large cooling systems are installed. However, these large systems are not fully utilized during all hot summer days. As a result, the investments in these cooling systems cannot be fully justified. A solution for more optimal use of the building cooling system is presented in this dissertation using Cool Thermal Energy Storage (CTES) deployed at a district level. Such CTES systems are charged overnight and the cool charge is dispatched as cool air during the day. The integration of the CTES helps to downsize the otherwise large cooling systems designed for the hottest day of the year. This reduces the capital costs of installing large cooling systems. However, one important question remains - how much of the CTES should be charged during the night, such that the cooling load for the next day is fully met and at the same time the CTES charge is fully utilized during the day. The solution presented in this dissertation integrated the CTES with Photovoltaics (PV) power forecasting and building load forecasting at a district level for a more optimal charge/discharge management. A district comprises several buildings all connected to the same cooling system with central CTES. The use of the forecasting for both the PV and the building cooling load allows the building operator to more accurately determine how much of the CTES should be charged during the night, such that the cooling system and CTES can meet the cooling demand for the next day. Using this approach, the CTES would be optimally sized and utilized more efficiently. At the same time, peak load is lowered, thus benefiting an electric utility company.

Page generated in 0.0409 seconds