• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Stratified Solar Ponds

Schober, Benjamin January 2010 (has links)
<p>This project deals with the potential of membrane stratified solar ponds which consist of two water layers, where one is a salt solution here, and a separating translucent membrane. An experimental pond was set up to study the thermal behaviour of such collector systems. The input is mainly solar radiation, sometimes when the ambient temperatures are higher than the pond temperatures also heat from the environment is transferred into the pond.</p><p>The measured temperatures of the pond, the ambient temperature, the global radiation and wind speed were the basis data for thermal calculations which showed that the pond was working well as a solar collector and thermal storage system all in one. Heat was not extracted from the pond however, only the losses to the environment were studied.</p><p>It was found out that the pond temperatures were higher than the ambient temperature over the whole measurement period of 12 days, and insulation and pollution problems as well as future prospects and suggestions for further studies are discussed at the end of this paper.</p>
2

Membrane Stratified Solar Ponds

Schober, Benjamin January 2010 (has links)
This project deals with the potential of membrane stratified solar ponds which consist of two water layers, where one is a salt solution here, and a separating translucent membrane. An experimental pond was set up to study the thermal behaviour of such collector systems. The input is mainly solar radiation, sometimes when the ambient temperatures are higher than the pond temperatures also heat from the environment is transferred into the pond. The measured temperatures of the pond, the ambient temperature, the global radiation and wind speed were the basis data for thermal calculations which showed that the pond was working well as a solar collector and thermal storage system all in one. Heat was not extracted from the pond however, only the losses to the environment were studied. It was found out that the pond temperatures were higher than the ambient temperature over the whole measurement period of 12 days, and insulation and pollution problems as well as future prospects and suggestions for further studies are discussed at the end of this paper.
3

Optimal predictive control of thermal storage in hollow core ventilated slab systems

Ren, Mei Juan January 1997 (has links)
The energy crisis together with greater environmental awareness, has increased interest in the construction of low energy buildings. Fabric thermal storage systems provide a promising approach for reducing building energy use and cost, and consequently, the emission of environmental pollutants. Hollow core ventilated slab systems are a form of fabric thermal storage system that, through the coupling of the ventilation air with the mass of the slab, are effective in utilizing the building fabric as a thermal store. However, the benefit of such systems can only be realized through the effective control of the thermal storage. This thesis investigates an optimum control strategy for the hollow core ventilated slab systems, that reduces the energy cost of the system without prejudicing the building occupants thermal comfort. The controller uses the predicted ambient temperature and solar radiation, together with a model of the building, to predict the energy costs of the system and the thermal comfort conditions in the occupied space. The optimum control strategy is identified by exercising the model with a numerical optimization method, such that the energy costs are minimized without violating the building occupant's thermal comfort. The thesis describes the use of an Auto Regressive Moving Average model to predict the ambient conditions for the next 24 hours. A building dynamic lumped parameter thermal network model, is also described, together with its validation. The implementation of a Genetic Algorithm search method for optimizing the control strategy is described, and its performance in finding an optimum solution analysed. The characteristics of the optimum schedule of control setpoints are investigated for each season, from which a simplified time-stage control strategy is derived. The effects of weather prediction errors on the optimum control strategy are investigated and the performance of the optimum controller is analysed and compared to a conventional rule-based control strategy. The on-line implementation of the optimal predictive controller would require the accurate estimation of parameters for modelling the building, which could form part of future work.

Page generated in 0.1034 seconds