• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Is Post Transplantation Performance Driven by the Variability of the Habitat of Origin?

Golding, Victoria C. 07 1900 (has links)
As rising sea temperatures and increases in the frequency, duration, and intensity of marine heatwaves threaten coral survival at a global scale, research on the capacity of corals to acclimatize and adapt to changing environments has become a high priority. Understanding how environmental parameters shape coral thermal performance across habitats is crucial to identify populations with high vulnerability or high thermal tolerance to future ocean warming. In recent studies, corals from high temperature variable environments (HVE) have shown increased thermal tolerance compared to corals from low temperature variable environments (LVE). Here, I investigate if these phenotypes are shaped by acclimatization, habitat-specific adaptation, or a combination of both, in the branching coral, Acropora hemprichii, by reciprocally transplanting individuals between a back (HVE) and front reef (LVE). After ten months of acclimatization, comparisons of photosynthetic efficiency (photosystem II), mortality, and bleaching recovery was assessed for > 2 months between coral ramets following a natural bleaching event in the central Red Sea. In tandem, coral bleaching severity and recovery in each reef environment was assessed to genus level by photographic surveys of fixed belt transects. Bleaching between reef sites was compared against bleaching in treatments to differentiate the role of habitat specific adaptation and acclimatization in the corals. This study aims to elucidate the evolutionary mechanisms driving coral habitat-specific thermal stress tolerances, which may inform coral reef management and restoration efforts.
2

Holocene Legacy: Evolution of Thermal Tolerance and Bloodfeeding in the Pitcher-Plant Mosquito, Wyeomyia smithii

Gerritsen, Alida 29 September 2014 (has links)
The legacy of historical biogeography impacts many organisms and results in a wide range of character variation over a latitudinal gradient. The pitcher-plant mosquito Wyeomyia smithii is one such organism that demonstrates a wide range of phenotypic and genotypic variation over the entirety of its range from the Gulf Coast to Canada. A geographic cline established by the presence and recession of the Laurentide Ice Sheet is manifest in the narrow range of thermal tolerance exhibited by different populations and also in the differing propensity of bloodfeeding by these mosquitoes. These contemporary clines were analyzed by a variety of experimental methods ranging from year-long fitness assays, scanning electron microscopy, and RNA-sequencing to determine the patterns underlying the resulting evolutionary differences among established populations. This dissertation includes both unpublished and co-authored material.
3

Methodological assessment of the Critical Thermal Maximum (CTmax) of anuran larvae: interaction among the experimental heating rates, ontogeny and body mass / Estudo metodológico da Temperatura Crítica Máxima (CTmax) de larvas de anfíbios anuros: interação entre as taxas de aquecimento experimental, ontogenia e massa corpórea

Cantero, Gustavo Adolfo Agudelo 31 October 2016 (has links)
Thermal limits for ectothermic animals displays a picture of the range of body temperatures that is tolerable by individuals before their locomotory capacity is impaired. However, thermal limits are not fixed and specific traits, but labile ones subjected to plastic adjustments and evolutionary change, and also are influenced by intrinsic and extrinsic factors of organisms, as well as by methodological factors inherent to experimental protocols. Even more, the influences of these factors on thermal limits have been commonly addressed independently in different taxa, and the extent by which multiple factors interact and affect thermal limits within taxa is poorly understood. Thus, the main aim of this work was to conduct a methodological assessment of the Critical Thermal Maximum (CTmax) by studying the influences of different experimental heating rates (ΔT’s), ontogeny, body mass, and the interaction among these factors on this trait. This matter was addressed on larvae of Physalaemus nattereri and Hypsiboas pardalis, two anuran species from the São Paulo State, southeastern Brazil, that differ in their phylogenetic background, ecological and life-history characteristics and inhabit environments with different thermal regimes. First, ΔT’s did affect averages and variances of CTmax in a species-specific manner. In addition, it was found a ΔT-dependent decreasing in CTmax at the end of metamorphosis in tadpoles of P. nattereri, because only the metamorphosing tadpoles exposed to the acute ΔT were more sensitive to high temperature than premetamorphic tadpoles. Finally, body mass and ΔT’s interacted on the CTmax of both species along our experimental design. In P. nattereri, body mass affected CTmax through physiology at the slow ΔT’s, whereas in H. pardalis body mass affected CTmax at the acute ΔT through a methodological artifact driven by higher thermal inertia in the group of large tadpoles. This study revealed that ΔT’s, ontogeny and body mass interact on the CTmax of our studied species, and these interactive effects could not have been elucidated by the independent study of each factor. It also highlights the importance of integrating the factors that influence thermal limits of ectothermic animals, especially in the context of climate change / Os limites térmicos para animais ectotérmicos mostram uma imagem do intervalo de temperaturas corporais que é tolerável pelos indivíduos antes de sua capacidade locomotora ser prejudicada. Porém, os limites térmicos não são características fixas e específicas, mas traços lábeis sujeitos tanto a ajustes plásticos quanto a mudanças evolutivas, e são influenciados por fatores intrínsecos e extrínsecos dos organismos, e também por fatores metodológicos associados aos protocolos experimentais. Ainda mais, as influências desses fatores sobre os limites térmicos têm sido comumente abordadas de forma independente em diferentes espécies, e o grau pelo qual múltiplos fatores interagem e afetam os limites térmicos dentro das espécies é pouco compreendido. Assim, o principal objetivo deste trabalho foi conduzir uma avaliação metodológica da Temperatura Crítica Máxima (CTmax) estudando as influências de diferentes taxas de aquecimento experimental (ΔT’s), ontogenia, massa corpórea e a interação entre esses fatores sobre esta característica fisiológica. Este assunto foi abordado em larvas de Physalaemus nattereri e Hypsiboas pardalis, dois espécies de anfíbios anuros encontrados no Estado de São Paulo, sudeste do Brasil, que diferem em sua origem filogenética, características ecológicas e de história de vida, e também habitam ambientes com diferentes regimes térmicos. Primeiro, foi encontrado que as ΔT’s afetaram tanto os valores médios quanto as variâncias da CTmax em ambas as espécies de maneira específica. Além disso, achou-se uma diminuição em CTmax no final da metamorfose que foi dependente da ΔT em larvas de P. nattereri, dado que nessa espécie só os girinos em metamorfose que foram expostos à ΔT aguda foram mais sensíveis às altas temperaturas do que os girinos premetamórficos. Finalmente, a massa corpórea e as ΔT’s interagiram sobre a CTmax em ambas as espécies ao longo do desenho experimental. Em P. nattereri, o efeito da massa corpórea sobre a CTmax foi fisiológico nas ΔT’s lentas, enquanto que em H. pardalis o efeito da massa corpórea na ΔT aguda foi devido a um artefato metodológico causado por maior inércia térmica no grupo de girinos maiores. Este estudo revelou que as ΔT’s, a ontogenia e a massa corpórea interagem sobre a CTmax das espécies estudadas, e estes efeitos interativos não poderiam ter sido elucidados pelo estudo independente de cada fator. Também é salientada a importância de integrar os fatores que influenciam os limites térmicos dos animais ectotérmicos, especialmente no contexto das mudanças climáticas
4

Methodological assessment of the Critical Thermal Maximum (CTmax) of anuran larvae: interaction among the experimental heating rates, ontogeny and body mass / Estudo metodológico da Temperatura Crítica Máxima (CTmax) de larvas de anfíbios anuros: interação entre as taxas de aquecimento experimental, ontogenia e massa corpórea

Gustavo Adolfo Agudelo Cantero 31 October 2016 (has links)
Thermal limits for ectothermic animals displays a picture of the range of body temperatures that is tolerable by individuals before their locomotory capacity is impaired. However, thermal limits are not fixed and specific traits, but labile ones subjected to plastic adjustments and evolutionary change, and also are influenced by intrinsic and extrinsic factors of organisms, as well as by methodological factors inherent to experimental protocols. Even more, the influences of these factors on thermal limits have been commonly addressed independently in different taxa, and the extent by which multiple factors interact and affect thermal limits within taxa is poorly understood. Thus, the main aim of this work was to conduct a methodological assessment of the Critical Thermal Maximum (CTmax) by studying the influences of different experimental heating rates (ΔT’s), ontogeny, body mass, and the interaction among these factors on this trait. This matter was addressed on larvae of Physalaemus nattereri and Hypsiboas pardalis, two anuran species from the São Paulo State, southeastern Brazil, that differ in their phylogenetic background, ecological and life-history characteristics and inhabit environments with different thermal regimes. First, ΔT’s did affect averages and variances of CTmax in a species-specific manner. In addition, it was found a ΔT-dependent decreasing in CTmax at the end of metamorphosis in tadpoles of P. nattereri, because only the metamorphosing tadpoles exposed to the acute ΔT were more sensitive to high temperature than premetamorphic tadpoles. Finally, body mass and ΔT’s interacted on the CTmax of both species along our experimental design. In P. nattereri, body mass affected CTmax through physiology at the slow ΔT’s, whereas in H. pardalis body mass affected CTmax at the acute ΔT through a methodological artifact driven by higher thermal inertia in the group of large tadpoles. This study revealed that ΔT’s, ontogeny and body mass interact on the CTmax of our studied species, and these interactive effects could not have been elucidated by the independent study of each factor. It also highlights the importance of integrating the factors that influence thermal limits of ectothermic animals, especially in the context of climate change / Os limites térmicos para animais ectotérmicos mostram uma imagem do intervalo de temperaturas corporais que é tolerável pelos indivíduos antes de sua capacidade locomotora ser prejudicada. Porém, os limites térmicos não são características fixas e específicas, mas traços lábeis sujeitos tanto a ajustes plásticos quanto a mudanças evolutivas, e são influenciados por fatores intrínsecos e extrínsecos dos organismos, e também por fatores metodológicos associados aos protocolos experimentais. Ainda mais, as influências desses fatores sobre os limites térmicos têm sido comumente abordadas de forma independente em diferentes espécies, e o grau pelo qual múltiplos fatores interagem e afetam os limites térmicos dentro das espécies é pouco compreendido. Assim, o principal objetivo deste trabalho foi conduzir uma avaliação metodológica da Temperatura Crítica Máxima (CTmax) estudando as influências de diferentes taxas de aquecimento experimental (ΔT’s), ontogenia, massa corpórea e a interação entre esses fatores sobre esta característica fisiológica. Este assunto foi abordado em larvas de Physalaemus nattereri e Hypsiboas pardalis, dois espécies de anfíbios anuros encontrados no Estado de São Paulo, sudeste do Brasil, que diferem em sua origem filogenética, características ecológicas e de história de vida, e também habitam ambientes com diferentes regimes térmicos. Primeiro, foi encontrado que as ΔT’s afetaram tanto os valores médios quanto as variâncias da CTmax em ambas as espécies de maneira específica. Além disso, achou-se uma diminuição em CTmax no final da metamorfose que foi dependente da ΔT em larvas de P. nattereri, dado que nessa espécie só os girinos em metamorfose que foram expostos à ΔT aguda foram mais sensíveis às altas temperaturas do que os girinos premetamórficos. Finalmente, a massa corpórea e as ΔT’s interagiram sobre a CTmax em ambas as espécies ao longo do desenho experimental. Em P. nattereri, o efeito da massa corpórea sobre a CTmax foi fisiológico nas ΔT’s lentas, enquanto que em H. pardalis o efeito da massa corpórea na ΔT aguda foi devido a um artefato metodológico causado por maior inércia térmica no grupo de girinos maiores. Este estudo revelou que as ΔT’s, a ontogenia e a massa corpórea interagem sobre a CTmax das espécies estudadas, e estes efeitos interativos não poderiam ter sido elucidados pelo estudo independente de cada fator. Também é salientada a importância de integrar os fatores que influenciam os limites térmicos dos animais ectotérmicos, especialmente no contexto das mudanças climáticas
5

The Stability of the Giant Clam Holobiont over Time and during Bleaching Stress

Pappas, Melissa 12 1900 (has links)
The stability of marine photosymbiotic holobionts has major implications for the future of coral reef communities. This study aims to describe the stability of the Red Sea giant clam holobiont over the duration of one year and during induced bleaching stress under laboratory thermal manipulations. Tridacnid clams of the species Tridacna maxima were sampled at three reef locations near the central Saudi coast of the Red Sea. Associated Symbiodinium of Red Sea giant clams have previously been described to be part of only Clade A, which suggests a strong specificity in the clam-algal partnership, but specific types and potential shifting of types within this clade have not been examined for giant clams. The results from this study confirm that tridacnid symbiont types shift over time and the change between three A1 types suggests a biological and functional significance of two undescribed A1 Symbiodinium types. Experimental bleaching shows that Red Sea giant clams, although exposed to rather hot temperatures naturally, will bleach at 34°C after two weeks, and severely bleached clams likely will not recover. During bleaching, Symbiodinium types shift as well, and shift more drastically than seasonal shifts during the year. This shifting may be an evolved characteristic of the giant clam to aid in surviving major changes in the environment. However, more research is needed to determine if these holobionts are capable of keeping up with the global forecast of warming in reef environments.
6

Oxygen Modulation of thermal tolerance in the branching coral Stylophora pistillata

Parry, Anieka 01 1900 (has links)
Coral reef ecosystems are under increasing threat from ocean warming and deoxygenation. Mass coral bleaching events in recent years have been linked to marine heatwaves but reporting of hypoxia-induced bleaching has also been increasing. Oxygen availability in coral reefs is driven by community metabolism and they experience a dynamic range of oxygen concentrations throughout diel cycles, hyperoxia during the day and hypoxia during the night. It has been suggested that the highest oxygen concentrations coincide with the hottest part of the day and this may protect marine taxa from high temperatures. We evaluated experimentally whether excess oxygen availability would increase the thermal threshold of the branching coral Stylophora pistillata, from the Southern Red Sea. We did this by exposing coral fragments of this species to varying dissolved oxygen concentrations (hypoxia, normoxia and hyperoxia) and a short-term temperature ramping regime (1˚C h-1). Hyperoxia did extend the thermal tolerance of S. pistillata fragments, with an LT50 of 39.1˚C as opposed to 39.0˚C for the normoxic treatment and 38.7˚C for the hypoxic treatment. Hyperoxia also increased respiration and gross photosynthesis and had a negative effect on photochemical efficiency at high temperatures. Net photosynthesis, P:R ratio and symbiont density were not significantly affected by oxygen concentration. Corals in this experiment displayed exceedingly high thermal thresholds, which were at least 2˚C higher than previously reported for the same species in the Central Red Sea. The corals used in the experiment had previously survived mass bleaching events in 2015 and hence we may have selected for individuals adapted to thermal stress. This is the first study to investigate the role of oxygen in the thermal tolerance of hermatypic corals and the first assessment of thermal thresholds from corals in the Southern Red Sea, where previously thermal thresholds have been based on a 1-2˚C increase in maximum mean monthly temperatures and visual bleaching observations. This highlights the need for increased experimental assessments of thermal thresholds in the Southern regions of the Red Sea and the important role of oxygen in moderating thermal stress.
7

Chronic Social Stress Impairs the Thermal Tolerance of Rainbow Trout (Oncorhynchus Mykiss)

Bard, Brittany 15 July 2020 (has links)
Juvenile rainbow trout (Oncorhynchus mykiss) held in pairs form dominance hierarchies, with subordinate individuals experiencing chronic social stress, as evidenced by prolonged elevation of the stress hormone cortisol. Prior work revealed that the thermal tolerance (measured as critical thermal maximum, CTmax) of subordinate fish was reduced, but the cause of this impairment was unknown. Here we tested the hypothesis that reduced thermal tolerance in subordinate trout is caused by prolonged elevation of circulating cortisol levels, affecting cardiac structure and function. In support of this hypothesis, subordinate trout that were allowed to recover from social stress for 48 h, a period sufficient to return cortisol to normal baseline levels, no longer showed a reduced CTmax. Furthermore, treatment of subordinates with cortisol to maintain elevated cortisol levels during the period of recovery from social stress prevented thermal tolerance from recovering. The possibility that prolonged elevation of cortisol levels induces cardiac remodelling in subordinate trout was explored by assessing heart histology and cardiac remodelling markers, and monitoring heart rate (fH). Picrosirius red staining revealed lower collagen levels in the ventricles of subordinate relative to dominant trout, although this difference was not accompanied by changes in collagen type I transcript abundances or protein levels, or by changes in markers of collagen turnover. Transcript abundances of markers of cardiac remodelling and ventricle mass were not significantly altered by chronic social stress. Heart rate in subordinates during social interactions was comparable to that in dominant fish. However, differences in fH responses of subordinate versus dominant fish were detected during acute warming. Specifically, peak heart rates tended to be observed at lower temperatures in subordinate fish relative to dominant. Thus, high baseline cortisol levels in subordinate trout result in lowered thermal tolerance, and chronic social stress has only minor effects on cardiac structure and function.
8

Characterization of the genetic diversity and thermal tolerance of Pocilloporid Corals in the Red Sea

Buitrago-López, Carol 07 1900 (has links)
This dissertation characterizes the genetic diversity and thermal tolerance of the coral holobiont Stylophora pistillata and Pocillopora verrucosa (family Pocilloporidae) across the Saudi Arabian Red Sea coast (~1500 km). The population genetic structure and holobiont diversity was assessed using genome-wide single nucleotide polymorphisms (SNPs) identified with reference genome-based RAD-Seq, while the associated microbial communities of the algal symbiont (Symbiodiniaceae) and bacteria were inferred from metabarcoding analyses of the ITS2 and 16S rRNA gene. Thermal tolerance of Stylophora pistillata colonies was assessed using standardized short-term heat stress assays on the novel Coral Bleaching Automated Stress System (CBASS). Chapter 1 details the assembly and annotation of the P. verrucosa genome (~380 Mbp; 27,439 gene models), which was highly complete and compared well to the already available S. pistillata genome. Chapter 2 presents population genetic analyses of both coral species, which revealed pronounced differences in their population genetic structure. While P. verrucosa seemed to be highly connected across the Red Sea basin with the exception of the far south, S. pistillata depicted a complex population genetic structure. Microbial communities of Symbiodiniaceae and bacteria were overall less diverse in P. verrucosa than in S. pistillata, and followed an association pattern that was partly determined by the environment and partly by host genotype. Chapter 3 identifies thermally tolerant S. pistillata genotypes by comparing the heat stress response of colonies collected at two sites within the same reef. Ex-situ heat-stress assays confirmed that colonies from the more temperature stable site (fore reef) were less thermally tolerant than their conspecifics from the back reef, where the diel temperature is more variable. This chapter also highlights the utility of acute heat-stress assays as a tool to identify thermotolerant colonies. Taken together, the work of this dissertation provides a foundation for coral conservation in the Red Sea. It highlights that the genetic structure differs between coral species, suggesting that effective conservation through marine protected areas need to incorporate data from multiple species. Coral population genetic data should further be complemented by thermal tolerance assays across the Red Sea to associate genetic diversity with patterns of heat stress tolerance.
9

Phenotypic plasticity of upper thermal tolerance in marine invertebrates at several hierarchical and geographical scales

Faulkner, Katelyn Terri 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: To predict the influence of temperature increases on organisms, and their capacity to respond to climate change, information on the upper thermal tolerance of organisms and its plasticity is required. However, various factors, such as rate of temperature change, may influence basal thermal tolerance and plastic responses, and consequently the vulnerability of organisms to temperature change. Although slower rates of temperature change might be more ecologically relevant, the majority of thermal tolerance studies feature rates of temperature change that are faster than those experienced by organisms in nature. Additionally, studies using slower rates of temperature change have been criticized as factors such as changes in body condition and accumulation of stress over time may confound results. This study determined the influence of fast and slow rates of temperature change and plasticity, induced by acclimation to different temperature conditions for 5 – 15 days, on the upper thermal tolerance of marine amphipod and isopod species from sub-Antarctic Marion Island and South Africa. Using congeners, intra- and inter-specific comparisons of the upper thermal tolerance and plasticity of these organisms were made across geographical regions (South Africa vs. Marion Island), across sites within regions (West coast vs. South coast of South Africa) and between tidal zones. Overall, lower rates of temperature change were found to be associated with lower values of upper thermal tolerance. At fast rates of temperature change, acclimation at high temperatures was associated with an increase in thermal tolerance, whereas at slow rates, acclimation to higher temperatures either had no effect or caused a decrease in thermal tolerance. Furthermore, microclimate recordings suggest that these organisms likely experience rates of temperature increase that are intermediate between the fast and slow rates employed in this study. Thus, in nature these marine invertebrates have upper thermal tolerances that are higher than mean environmental temperature and can likely mount plastic responses during short-term temperature variation. At slow rates of temperature change, however, the upper thermal tolerance of these organisms approximates environmental temperature and plasticity is reduced, likely increasing vulnerability to high temperatures. At the intra-specific level, upper thermal tolerance and plasticity response varied based on mass and sex, however, these effects were species-specific. Isopods inhabiting cooler but more variable microsites on the West coast of South Africa had a higher upper thermal tolerance, but similar magnitude of plasticity, than a population of the same species from the warmer, less variable South coast. Generally, Marion Island species had a lower upper thermal tolerance but higher magnitude of plasticity than South African species. The variability reported here at different hierarchical and geographical scales could be linked to the distinct thermal environments experienced, and the differing physiological and behavioural responses of populations and species to their thermal environments. This variation in thermal tolerance might be critical during environmental change and suggests that species composition may be altered in the future. / AFRIKAANSE OPSOMMING: Om die invloed van temperatuur verhogings op organismes, en hul vermoë om te reageer op hierdie verandering, te voorspel, word inligting oor hoë temperatuur verdraagsaamheid van organismes en die plastisiteit hiervan, benodig. Verskeie faktore, soos die tempo van verandering, kan egter basale termiese verdraagsaamheid en plastiese reaksies beïnvloed. Dus, mag dit die tasbaarheid vir temperatuur verandering beïnvloed. Alhoewel stadiger tempo van verandering meer ekologies relevant kan wees, fokus die meerderheid van warm verdraagsaamheid studies op temperatuur veranderinge wat vinniger gebeur as wat ervaar word deur organismes in die natuur. Boonop word studies wat fokus op stadige veranderinge in temperatuur, gekritiseer omdat faktore soos ‘n verandering in liggaamstoestand en die opeenhoping van stres, potentieël die resultate kan belemmer. Hierdie studie ondersoek die invloed van vinnige en stadige temperatuur veranderinge en die plastisiteit, geïnduseer deur akklimasie, met betrekking tot verskeie temperature vir 5-15 dae. Ons fokus spesifiek op die hoë temperatuur verdraagsaamheid van mariene amphipod- en isopod spesies van sub-Antarktiese Marion Island en Suid Afrika. Deur gebruik te maak van spesies wat aan dieselfde genus behoort, is vergelykings getrek tussen intra- en inter-spesies verbande met betrekking tot hul termiese verdraagsaamheid en plastisiteit. Die studie is oor geografiese streke (Suid Afrika vs. Marion Island), tussen areas binne ‘n geografiese streek (Weskus vs. Suidkus van Suid Afrika) en tussen gety sones voltooi. Oor die algemeen was stadige temperatuur veranderinge geassosieër met ‘n laer termiese verdraagsaamheid vir hoë temperature. Met vinnige veranderinge in klimaat, was akklimasie by hoë temperature geassosieër met ‘n hoër temperatuur limiet, maar by stadige temperatuur veranderinge het akklimasie by hoë temperature geen effek gehad nie, of het ‘n afname in termiese verdraagsaamheid veroorsaak. Verder het mikroklimaat opnames aangedui dat hierdie organismes waarskynlik temperatuur verhogings ondervind in hul natuurlike habitat, wat intermediêre is van die vinnige en stadige veranderinge wat in hierdie studie gebruik is. Dus, in die natuur, het hierdie mariene invertebrate `n boonste termiese toleransies wat hoër is as die gemiddelde omgewingstemperatuur en kan hulle waarskynlik van platiese reaksies gebruik maak tydens kort-termyn temperatuur variasie. Gedurende stadige temperatuur veranderinge toon hulle alhoewel hoë termiese verdraagsaamheid teenoor die omgewingstemperature en plastisiteit is verminder, wat heel waarskynlik toenemende kwesbaarheid vir hoë temperature tot gevolg het. Op die intra-spesifieke vlak was wisseling in hoë termiese verdraagsaamheid gebaseer op liggaams massa en geslag, maar hierdie veskille was spesie-spesifiek. Isopoda wat koeler areas bewoon, met meer variasie in hul mikroklimaat, soos ondervind in die Weskus van Suid Afrika, het `n hoër termiese verdraagsaamheid. Maar, soortgelyke mate van plastisiteit, as 'n populasie van dieselfde spesie van die warmer, minder veranderlike Suidkus. Oor die algemeen het Marion-eiland spesies 'n laer termiese verdraagsaamheid, maar hoër grootte van plastisiteit as Suid-Afrikaanse spesies. Die veranderlikheid wat hier geraporteer is, kan op verskeie hiërargiese en geografiese vlakke gekoppel wees aan die unieke termiese omgewings wat hierdie organismes ervaar en aan die verskillende fisiologiese- en gedrags reaksies van populasies en spesies tot hulle termiese omgewings. Die variasie in termiese verdraagsaamheid kan krities wees tydens omgewingsverandering en dui daarop dat spesie-samestelling kan verander in die toekoms. / The British Antarctic Survey for funding
10

The effect of temperature on biological control of water hyacinth, Eichhornia crassipes (Pontederiaceae) in South Africa

King, Anthony Michael 18 January 2012 (has links)
MSc., Faculty of Science, University of the Witwatersrand, 2011 / The behaviour and physiology of every insect, during all developmental stages, is largely determined by temperature. Metabolic rate, flight activity, nutrition, growth rate, oviposition and longevity can all be correlated to temperature. Consequently, insect development occurs within a definite temperature range which can be experimentally determined. This serves as a basis from which models that estimate insect growth, development and reproduction can be formulated. Such studies on temperature-dependent development are therefore important for understanding predator-prey relationships and insect population dynamics relevant in epidemiology, pest management and biological control of weeds and insect pests. The biological control of water hyacinth, Eichhornia crassipes (Pontederiaceae), in South Africa currently relies on six established agents. However, the results of this programme do not compare well with the achievements made elsewhere. This has been attributed to a number of constraining factors, chief among which is a wide variety of climatic regions, low minimum temperatures and a high incidence of frosting which slows the build-up of natural enemy populations. This research verified and augmented the thermal tolerance data available for three of South Africa’s more efficacious agents used against water hyacinth, namely Neochetina eichhorniae, N. bruchi (Curculionidae) and Eccritotarsus catarinensis (Miridae). Using these data, plant productivity and insect activity was modelled against fine-scale temperature data incorporating three distinct microclimates from 14 field sites distributed throughout South Africa’s climatic regions. Water hyacinth and its natural enemies were found to be negatively affected by low average temperatures. However, the relative consequences for each species at a population level were quite different. Similar thresholds for development, close to 10°C, meant that periods available for growth in areas where temperature is limiting were roughly the same for both plant and insects. Nevertheless, although plant growth largely ceased each winter and aerial parts were often extensively damaged from frost, low temperatures rarely led to significant plant mortality. By contrast, reduced insect recruitment coupled with a high susceptibility to cold- and frost-induced mortality of all life-history stages, pushed insect populations into winter bottlenecks and even caused local extinctions. The ability to overwinter effectively appears to the primary cause for limited control in colder regions. Surviving post-winter insect populations were therefore small, inflicted minimal damage due to reduced feeding rates, and were generally asynchronous with the recovery of water hyacinth. This asynchronous development translated into a lag period of roughly 42 days between the onset of water hyacinth growth and the time at which the plant was subjected to meaningful herbivory. Free from early season herbivory, coupled with the fact that vegetative reproduction continued through winter, water hyacinth populations were able to quickly recover and outpaced the detrimental affects caused by insect feeding well into the growth season. The implications for supplementary management strategies are also discussed in light of these outcomes.

Page generated in 0.0736 seconds