• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 87
  • 56
  • 19
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 355
  • 91
  • 69
  • 60
  • 54
  • 50
  • 44
  • 44
  • 41
  • 38
  • 34
  • 32
  • 30
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Variational Asymptotic Method for Unit Cell Homogenization of Thermomechanical Behavior of Composite Materials

Teng, Chong 01 May 2013 (has links)
To seek better material behaviors, the research of material properties has been mas- sively carried out in both industrial and academic fields throughout the twentieth century. Composite materials are known for their abilities of combining constituent materials in or- der to fulfill the desirable overall material performance. One of the advantages of composite materials is the adjustment between stiffness and lightness of materials in order to meet the needs of various engineering designs. Even though the finite element analysis is mature, composites are heterogeneous in nature and can present difficulties at the structural level with the acceptable computational time. A way of simplifying such problems is to find a way to connect structural analysis with corresponding analysis of representative microstructure of the material, which is normally called micromechanics modeling or homogenization.Generally speaking, the goal of homogenization is to predict a precise material behavior by taking into account the information stored in both microscopic and macroscopic levels of the composites. Of special concern to researchers and engineers is the thermomechanical behavior of composite materials since thermal effect is almost everywhere in real practical cases of engineering. In aerospace engineering, the thermomechanical behaviors of compos- ites are even more important since flight under high speed usually produces a large amount of heat which will cause very high thermal-related deformation and stress.In this dissertation, the thermomechanical behavior of composites will be studied based on the variational asymptotic method for unit cell homogenization (VAMUCH) which was recently developed as an efficient and accurate micromechanics modeling tool. The theories and equations within the code are based on the variational asymptotic method invented by Prof. Berdichevsky. For problems involving small parameters, the traditional asymptotic method is often applied by solving a system of differential equations while the variational asymptotic method is using a variational statement that only solves one functional of such problems where the traditional asymptotic method may apply.First, we relax the assumption made by traditional linear thermoelasticity that not only a small overall strain is assumed to be small but also the temperature variation. Of course, in this case we need to add temperature dependent material properties to VAMUCH so that the secant material properties can be calculated. Then, we consider the temperature field to be point-wise different within the microstructure; a micromechanics model with nonuniformly distributed temperature field will be addressed. Finally, the internal and external loads induced energies are considered in order to handle real engineering structures under their working conditions.
132

Renforcement thermomécanique et amélioration des propriétés barrière aux essences du HDPE par des approches (nano)composites / Thermomechanical reinforcement and improvement of barrier properties to fuels of HDPE by a (nano)composite route

Guichard, Bryan 13 March 2019 (has links)
Depuis quelques années, les polyoléfines et en particulier le Polyéthylène présentent un intérêt économique qui se traduit par un marché en croissance constante. Cependant, il est souvent nécessaire d’améliorer leurs propriétés d’usage notamment pour des problématiques liées à l’industrie automobile. Dans ce contexte, une amélioration des propriétés thermomécaniques et barrière aux vapeurs et liquides du Polyéthylène sur une gamme de température étendue constitue un nouveau challenge scientifique et environnemental. Dans cette étude, nous avons tout d’abord étudié l’impact de charges inorganiques et d’un recuit à 125°C sous air sur les propriétés thermomécaniques d’un HDPE. Le deuxième axe de recherche s’est concentré sur l’amélioration des propriétés barrière aux essences de ce polymère en favorisant les charges lamellaires pour leur haut facteur de forme induisant un effet de tortuosité élevé. L’impact de ce type de charges sur les phénomènes de sorption et d’extraction a été étudié dans le but de définir une formulation à base HDPE optimale pour limiter la perte physique d’oligomères et d’antioxydants. Le but de ces travaux étant de mieux comprendre les différents mécanismes mis en jeu, nous avons cherché à établir les relations Structure / Morphologie / Propriétés pour les deux axes d’étude développés / In the recent years, the use of polyolefin and especially Polyethylene are of economic interest resulting in a growing attention concerning the improvement of its properties of use, especially for automotive application. In this context, the reinforcement of its thermomechanical properties and the improvement of its barrier properties to different fuels over an extended temperature range constitute a major scientific and environmental challenge. In this study, we first decided to analyze the impact of silica particles and of an annealing at 125°C under air atmosphere on thermomechanical properties of a HDPE. The second area of research was focused on the improvement of its barrier properties to fuels by the addition of lamellar charges known for their high aspect ratio inducing a tortuosity effect. The impact of these particles on sorption and extraction phenomena was also studied to determine an optimal HDPE-based formulation in order to limit the physical loss of oligomers and antioxidants. The guideline of this project was the determination of Structure / Morphology / Properties relationships to have a better understanding of the involved mechanisms
133

Scaling laws in permeability and thermoelasticity of random media

Du, Xiangdong, 1967- January 2006 (has links)
No description available.
134

Effect of deformation conditions on texture and microstructure of magnesium sheet AZ31

Hsu, Emilie Chia Ching, 1979- January 2006 (has links)
No description available.
135

Comprehensive Modeling of Shape Memory Alloys for Actuation of Large-Scale Structures

Kumar, Abhimanyu 03 December 2010 (has links)
No description available.
136

Multi-physics Modeling and Calibration for Self-sensing of Thermomechanical In-plane Microactuators

Teichert, Kendall B. 09 July 2008 (has links) (PDF)
As technology advances and engineering capabilities improve, more research has focused on microscopic possibilities. Microelectromechanical systems (MEMS) is one area that has received much attention recently. Within MEMS much research has focused on sensing and actuation. This thesis presents work on a particular actuator of interest, the thermomechanical in-plane microactuator (TIM). Recent work has shown the possibility of a novel approach of sensing mechanical outputs of the TIM without ancillary sensors. This sensing approach exploits the piezoresistive property of silicon. However, to implement this approach a full model of the TIM would need to be obtained to describe the physics of the TIM, as well as development of a calibration approach to account for variations between devices. This thesis develops a multi-physics model of the TIM to realize this sensing approach. This model determines the mechanical state of the TIM using the same electrical signal that actuates the TIM. In this way the TIM is able to operate as a self-sensing actuator. To allow this multi-physics model to be tractable, work was done to simplify the thermal modeling of the TIM. A preliminary calibration approach was developed to adequately compensate for variations between devices. Thermal modeling and calibration were coupled with mechanical modeling and a developed sensing approach to form the full multi-physics model of the TIM. Validation testing of the model was performed with a modified calibration approach which showed good correlation with experimental data.
137

Modeling, Design, and Testing of an Underwater Microactuation System Using a Standard MEMS Foundry Process

Holst, Gregory L. 18 April 2011 (has links) (PDF)
This work presents the modeling, design, and testing of an underwater microactuation system. It is composed of several thermomechanical in-plane microactuators (TIM) integrated with a ratchet system to provide long displacements and high forces to underwater microelectromechanical systems (MEMS). It is capable of actuating a 200µN load 110µm. It is a two-layer silicon MEMS device fabricated with a MEMS fabrication process, PolyMUMPS. This work also shows the development of an elliptic integral model to analyze the compliant fixed-guided beams in the TIM and gives new insight into the buckling behavior, reaction forces, and displacement of the beams. The derivation, verification, and practical use of the model are shown in detail. It compares the reaction force predictions from the elliptic integral model with finite element modeling results over a wide range of non-dimensional displacements and slenderness ratios. The elliptic integral model was used to design a TIM that can operate in an aqueous environment. It was designed to achieve 9µm of displacement to drive a linear ratcheting mechanism. The thermal analysis was done in ANSYS using a 3D conduction model to predict the temperature of the heated beams. The TIM was designed to operate with a peak beam temperature of 100 ° C to prevent damage to the device due to vapor bubble formation. The main actuator showed significant electrolysis due to the high voltages used to drive the system, but otherwise functioned as predicted. Through the development and testing of the actuation system, quantitative voltage limits were discovered for underwater actuation systems under which electrolysis and boiling can be eliminated using alternating current.
138

Life Length and Stress Tests of Electric Machines for Electric Vehicles / Livslängdsuppskattning och spänningstest av elektriska maskiner i elektriska fordon

Sanz Desco, Raul January 2017 (has links)
Electrical machines have been widely used along the last decades with large life length under operating conditions. However, they will become more important in the upcoming years because of the emerging electric car industry. Thus, the maintenance cost of this technology can be reduced by extending the lifetime in the electrical machines. Despite the fact that existing numerous studies within the life length in these devices, only few study the effect of the thermomechanical stresses of insulation. The core of this master thesis is to study the influence of these stresses in the insulation material of a winding. The tested electrical machines were subjected to different test conditions, allowing to analyse multiple aging effects in the winding. To achieve these effects, power cycling tests were carried out on stators, where the windings were tested in cycles with different ΔT and two cooling methods: air cooling and oil cooling. The results showed large aging differences between the two cooling methods employed. The aging effect in the oil cooling method was higher than in the air cooling method for the same number of cycles. However, the aging effects regarding the same cooling process had not wide differences between the different test temperatures.
139

Thermo-mechanical Characterization Of High-temperature Shape Memory Ni-ti-pd Wires

Fox, Matthew 01 January 2009 (has links)
Actuator applications of shape memory alloys have typically been limited by their phase transformation temperatures to around 100 degrees C. However, recently with a focus on aerospace and turbomachinery applications there have been successful efforts to increase the phase transformation temperatures. Several of these alloy development efforts have involved ternary and quaternary elemental additions (e.g., Pt, Pd, etc.) to binary NiTi alloys. Experimentally assessing the effects of varying composition and thermo-mechanical processing parameters can be cost intensive, especially when expensive, high-purity elemental additions are involved. Thus, in order to save on development costs there is value in establishing a methodology that facilitates the fabrication, processing and testing of smaller specimens, rather than larger specimens from commercial billets. With the objective of establishing such a methodology, this work compares thermo-mechanical test results from bulk dog-bone tensile Ni29.5Ti50.5Pd20 samples (7.62 mm diameter) with that of thin wires (100 μm-150 µm diameter) extracted from comparable, untested bulk samples by wire electrical-discharge machining (EDM). The wires were subsequently electropolished to different cross-sections, characterized with Scanning Electron Microscopy, Transmission Electron Microscopy and Energy Dispersive X-Ray Spectroscopy to verify the removal of the heat affected zone following EDM and subjected to Laser Scanning Confocal Microscopy to accurately determine their cross-sections before thermo-mechanical testing. Stress-strain and load-bias experiments were then performed on these wires using a dynamic mechanical analyzer and compared with results established in iv previous studies for comparable bulk tensile specimens. On comparing the results from a bulk tensile sample with that of the micron-scale wires, the overall thermomechanical trends were accurately captured by the micron-scale wires for both the constrained recovery and monotonic tensile tests. Specifically, there was good agreement between the stress-strain response in both the martensitic and austenitic phases, the transformation strains at lower stresses in constrained recovery, and the transformation temperatures at higher stresses in constrained recovery. This work thus validated that carefully prepared micron-diameter samples can be used to obtain representative bulk thermo-mechanical properties, and is useful for fabricating and optimizing composition and thermomechanical processing parameters in prototype button melts prior to commercial production. This work additionally assesses potential applications of high temperature shape memory alloy actuator seals in turbomachinery. A concept for a shape memory alloy turbine labyrinth seal is also presented. Funding support from NASA’s Fundamental Aeronautics Program, Supersonics Project (NNX08AB51A) and Siemens Energy is acknowledged.
140

Thermomechanical Behavior Of High-temperature Shape Memory Alloy Ni-ti-pd-pt Actuators

Nicholson, Douglas E 01 January 2011 (has links)
To date the commercial use of shape memory alloys (SMAs) has been mostly limited to binary NiTi alloys with transformation temperatures approximately in the -100 to 100 ºC range. In an ongoing effort to develop high-temperature shape memory alloys (HTSMAs), ternary and quaternary additions are being made to binary NiTi to form NiTi-X (e.g., X: Pd, Pt, Au and Hf) alloys. Stability and repeatability can be further increased at these higher temperatures by limiting the stress, but the tradeoff is reduced work output and stroke. However, HTSMAs operating at decreased stresses can still be used effectively in actuator applications that require large strokes when used in the form of springs. The overall objective of this work is to facilitate the development of HTSMAs for use as high-force actuators in active/adaptive aerospace structures. A modular test setup was assembled with the objective of acquiring stroke, stress, temperature and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were evaluated under both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Recognizing that evolution in the material microstructure results in changes in geometry and vice versa in HTSMA springs, the objective of the present study also included assessing the contributions from the material microstructural evolution, by eliminating contributions from changes in geometry, to overall HTSMA spring performance. The finite element method (FEM) was used to support the analytical analyses and provided further insight into the behavior and heterogeneous stress states that exist in these spring actuators. iv Furthermore, with the goal of improving dimensional stability there is a need to better understand the microstructural evolution in HTSMAs that contributes to irrecoverable strains. Towards this goal, available Ni29.5Ti50.5Pd20 neutron diffraction data (from a comparable HTMSA alloy without the solid solution strengthening offered by the Pt addition) were analyzed. The data was obtained from in situ neutron diffraction experiments performed on Ni29.5Ti50.5Pd20 during compressive loading while heating/cooling, using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory. Specifically, in this work emphasis was placed on neutron diffraction data analysis via Rietveld refinement and capturing the texture evolution through inverse pole figures. Such analyses provided quantitative information on the evolution of lattice strain, phase volume fraction (including retained martensite that exists above the austenite finish temperature) and texture (martensite variant reorientation and detwinning) under temperature and stress. Financial support for this work from NASA’s Fundamental Aeronautics Program Supersonics Project (NNX08AB51A), Subsonic Fixed Wing Program (NNX11AI57A) and the Florida Center for Advanced Aero-Propulsion (FCAAP) is gratefully acknowledged. It benefited additionally from the use of the Lujan Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Office of Basic Energy Sciences (Department of Energy) and is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.

Page generated in 0.0831 seconds