Spelling suggestions: "subject:"piezoresistive"" "subject:"piezoresistivity""
1 |
Feasibility of CNT Epoxy Thermoset Based Strain Sensors for Sensing in Structural ApplicationsAlexander, Jamel Hill 06 May 2017 (has links)
Since their development in the early 1930’s, strain gauges have become an integral part of our lives. The amount of strain measured using strain gauges are the basis for calculating the corresponding: car engine torque, train rail forces, detection of traffic flow and vehicle type, and monitoring bridge safety. As the design of structural parts become more complex in geometry, the need for highly sensitive strain sensors are becoming more essential to ensure the vitality of structural parts. This is especially true when it comes to additive manufactured (AM) parts made from metals, polymers and composites. If sensors can be miniaturized, or even in some cases, be incorporated as part of the host structure, this will provide a non-intrusive monitoring method during the manufacturing process and subsequent service life of the part. However prior to the actual use of embedded sensors, more information is needed regarding the sensitivity of the geometry to the fidelity of the signal. The objective of this research was to explore the feasibility of signal outputs from carbon nanotube (CNT)/epoxy strain sensors and their ability to sense strains on structural components. This research evaluated (1) how percolation within the sensors was affected based on sensor array geometry, (2) various weight percent (w/w%) loading of CNTs required for signal output, (3) how the various w/w% loading affected the mechanical and electrical resistance and conductivity of the sensors and (4) the ability of the sensors to give the same signal output under repeatable cyclic loading.
|
2 |
Piezoresistance of multiwall carbon nanotubes self-anchored to micromachined silicon cavities for high resolution pressure sensingChauhan, Ashok January 2013 (has links)
This thesis presents the utilisation of giant piezoresistance of carbon nanotubes (CNTs) for high resolution pressure sensing. The nanoscale diameter of CNTs, used as sensing elements, increases the resolution of piezoresistive sensing by three orders of magnitude to that of silicon based sensors. The design of the sensor is based on sensing the strain in CNTs induced by the flow of gas and can be adapted to benefit cross-disciplinary fields like; flow and pressure sensing, microfluidics, Lab-on-chip and NEMS (nano-electromechanical systems). CNTs were grown inside silicon micro-cavities so as to bridge the gap between two silicon substrates. The nickel catalyst coated silicon substrates act as electrodes connected to the two ends of CNTs. The CNTs grow on the nickel nanoparticles, thus self-anchoring on to the substrate. Diffusion of nickel in silicon provides low resistive NiSi contacts to CNTs. Growth of CNTs in this form have not been reported before and presents several merits including no chemical treatment or post-growth alignment of CNTs, thus keeping the process simple and robust. CNT growth parameters; temperature, time and methane flow rate, were optimised in a custom designed chemical vapour deposition (CVD) rig, to control the CNT diameter. CNT diameter directly affects its piezoresistive coefficient, πL, and Young’s modulus, E, the factors that define piezoresistance in any material. Thus, optimised growth conditions allowed the direct tuning of piezoresistance of the sensor. Piezoresistance sensing was performed by inducing strain in CNTs with an applied differential pressure across the microcavity. Pressure loadings of as low as 0.1 atm (limited only by the gauge resolution) and a piezoresistance of as high as 16% at a pressure loading of 1 atm, were achieved. This piezoresistance is at least one order higher and the resolution is three orders higher than commercially available polysilicon and GaAs membrane based sensors. Piezoresistance was modelled by applying Euler-Bernoulli beam theory, assimilating CNTs to rigid beams with special boundary conditions, accounting for self-anchoring to Ni islands. The resulting theory is found to be in good agreement with our experimental results and estimates the E, πL and the average radius of the CNTs. This modelling, to our knowledge, is an original attempt to modify Euler-Bernoulli beam theory with the assumed boundary conditions.
|
3 |
Smart material composites for magnetic field and force sensorsKarmarkar, Makarand Anand 06 October 2008 (has links)
Piezoelectric material based sensors are widely used in applications such as automobiles, aircraft, and industrial systems. In past decade, attention has been focused on synthesizing composites that can provide multifunctional properties, i.e., same material exhibits two or more properties. In this group of composites, magnetoelectric materials are particularly interesting as they provide the opportunity of coupling magnetic and electric field. Another class of composite materials that are being actively pursued is piezoresistive materials. Piezoresistivity refers to change in resistance with applied stress and these materials are promising for enhancing the sensitivity of current generation pressure sensors based on silicon.
In this study, we focus on two composites systems: ferrite / Terfenol-D / nickel — lead zirconate titanate (magnetoelectric); and lanthanum strontium manganate (LSMO) — carbon nanotube (CNT) – silicon carbonitride (SiCN) (piezoresistive). Recently, Islam et al. have reported a magnetic field sensor based on a piezoelectric transformer with a ring- dot electrode pattern. In this thesis, this design was further investigated by synthesizing Terfenol-D / PZT laminate. The fabricated sensor design consists of a ring-dot piezoelectric transformer laminated to a magnetostrictive disc and its working principle is as follows: When a constant voltage is applied to the ring section of the piezoelectric layer at resonance, a stress is induced in the dot section. Then, if an external magnetic object is introduced in the vicinity of the dot section, the effective elastic stiffness is increased, altering the resonance frequency (fr). The variation of resonance frequency and magnitude of output voltage with applied magnetic field was characterized and analyzed to determine the sensitivity. The sensor showed a shift of ~1.36Hz/Oe over the frequency range of 137.4<fr<144.2 kHz with increasing magnetic bias from 1<Hdc<6kOe.
Next, in order to overcome the need of magnetic DC bias in current magnetoelectric composites, a metal – ceramic core-shell composite structure was investigated. Metal-ceramic composite particles were synthesized at room temperature and their magnetic properties were investigated. The particles constitute a core-shell structure where the core is nickel-metal, while the shell is manganese zinc ferrite (MZF). Coprecipitation was used for synthesis of MZF nanoparticles comprising the shell, whereas nickel was synthesized by hydrazine assisted reduction of nickel ions in aqueous media. A core shell structure was then obtained by hetero-coagulation to form a shell of MZF around the nickel particles. Electron microscopy and x-ray diffraction confirmed nickel cores coated by MZF shells. Magnetization studies of MZF nano-particles revealed that they were not super-paramagnetic at room temperature, as expected for such particle sizes of 20nm in size. Sintered composites of metal-ceramic particles core-shell exhibited a magnetostriction of 5ppm.
Lastly, the thesis investigates the piezoresistive properties of LSMO – CNT – SiCN composites that were synthesized by the conventional ceramic sintering technique. Recent investigations have shown that CNTs and SiCN have high piezoresistive coefficient. DSC/TGA results showed that pure CNTs decompose at temperatures of ~600°C, however, SiCN was found to sustain the sintering temperature of 1300°C. Thus, LSMO – SiCN composites were used for the final analysis. A fractional resistivity change of 4% was found for LSMO — 12.5 vol% SiCN composites which is much higher compared to that of unmodified LSMO. / Master of Science
|
4 |
An analysis of the piezoresistive response of n-type, bottom-up, functionalized silicon microwiresMcClarty, Megan 23 December 2014 (has links)
As the world’s population increases, the demand for energy also grows. The strain on our limited resources of fossil fuels is unsustainable in the long term. An alternative, renewable method of energy generation must be implemented. Solar energy has good potential as an environmentally sound, unlimited energy source, but solar devices are not yet able to efficiently store energy for later use. A device has been proposed which uses direct sunlight to split water into hydrogen and oxygen. The hydrogen can then be harvested and stored as fuel, solving the question of how to effectively store energy generated during times of peak sunlight for use when sunlight levels are low. The prototype device incorporates arrays of doped silicon microwires which function as light absorbers and current-carriers, driving the chemical reactions that evolve hydrogen from water. This work aims to quantify and characterize the reduction in microwire resistivity that is achievable through application of silicon’s piezoresistive properties. Silicon displays a change in electrical resistance as a function of applied mechanical strain. This electromechanical effect has been studied extensively in bulk and top-down (etched) microstructures, but studies on microstructures grown bottom-up have been limited. A simple method is presented for piezoresistive characterization of individual, released, bottom-up silicon microwires. It is shown that these n-type microwires display a consistent negative piezoresistive response which increases in magnitude with increasing doping concentration. It was found that harnessing the piezoresistive response of moderately-doped (∼10^17 cm^−3) n-type wires allowed for a maximum observed reduction in resistivity of 49%, which translated to a 1% reduction in overall system resistance of a prototype unit cell of the artificial photosynthesis device, if all other components therein remained unchanged. / February 2015
|
5 |
Piezoresistance in Polymer NanocompositesRizvi, Reza 22 August 2014 (has links)
Piezoresistivity in conductive polymer nanocomposites occurs because of the disturbance of particle networks in the polymer matrix. The piezoresistance effect becomes more prominent if the matrix material is compliant making these materials attractive for applications that require flexible force and displacement sensors such as e-textiles and biomechanical measurement devices. However, the exact mechanisms of piezoresistivity including the relationship between the matrix polymer, conductive particle, internal structure and the composite’s piezoresistance need to be better understood before it can be applied for such applications. The objective of this thesis is to report on the development of conductive polymer nanocomposites for use as flexible sensors and electrodes. Electrically conductive and piezoresistive nanocomposites were fabricated by a scalable melt compounding process. Particular attention was given to elucidating the role of matrix and filler materials, plastic deformation and porosity on the electrical conduction and piezoresistance. These effects were parametrically investigated through characterizing the morphology, electrical properties, rheological properties, and piezoresistivity of the polymer nanocomposites. The electrical and rheological behavior of the nanocomposites was modeled by the percolation-power law. Furthermore, a model was developed to describe the piezoresistance behavior during plastic deformation in relation to the stress and filler concentration.
|
6 |
Advanced MEMS Pressure Sensors Operating in FluidsAnderås, Emil January 2012 (has links)
Today’s MEMS technology allows manufacturing of miniaturized, low power sensors that sometimes exceeds the performance of conventional sensors. The pressure sensor market today is dominated by MEMS pressure sensors. In this thesis two different pressure sensor techniques are studied. The first concerns ways to improve the sensitivity in the most commonly occurring pressure sensor, namely such based on the piezoresistive technique. Since the giant piezoresistive effect was observed in silicon nanowires, it was assumed that a similar effect could be expected in nano-thin silicon films. However, it turned out that the conductivity was extremely sensitive to substrate bias and could therefore be controlled by varying the backside potential. Another important parameter was the resistivity time drift. Long time measurements showed a drastic variation in the resistance. Not even after several hours of measurement was steady state reached. The drift is explained by hole injection into the buried oxide as well as existence of mobile charges. The piezoresistive effect was studied and shown to be of the same magnitude as in bulk silicon. Later research has shown the existence of such an effect where the film thickness has to be less than around 20 nm. The second area that has been studied is the pressure sensitivity of in acoustic resonators. Aluminium nitride thin film plate acoustic resonators (FPAR) operating at the lowest-order symmetric (S0), the first-order asymmetric (A1) as well as the first-order symmetric (S1) Lamb modes have been theoretically and experimentally studied in a comparative manner. The S0 Lamb mode is identified as the most pressure sensitive FPAR mode. The theoretical predictions were found to be in good agreement with the experiments. Additionally, the Lamb modes have been tested for their sensitivities to mass loading and their ability to operate in liquids, where the S0 mode showed good results. Finally, the pressure sensitivity in aluminium nitride thin film bulk wave resonators employing c- and tilted c-axis texture has been studied. The c-axis tilted FBAR demonstrates a substantially higher pressure sensitivity compared to its c-axis oriented counterpart.
|
7 |
Capteur de pression résonant à nanojauges pour application aéronautique / Resonant pressure sensor with nanogauges detection for aeronautic applicationLehée, Guillaume 22 October 2015 (has links)
Le marché des capteurs de pression pour le secteur aéronautique est mature mais encore en forte croissance, caractérisé par une forte valeur ajoutée, et générateur d'une forte demande en innovation. Par exemple, le rapprochement des systèmes de mesure vers les zones chaudes de l'avion nécessite de revoir l'architecture du capteur, dont l'élément sensible.Pour répondre à ces besoins, nous avons développé un capteur de pression intégrant une détection du mouvement d'un microrésonateur sur membrane avec des nanofils en silicium piezorésistifs. Une version simplifiée de microrésonateur sans ces nanojauges de déformation a été conçue, modélisée, fabriquée puis caractérisée afin d'en valider le bon fonctionnement. En parallèle, les caractéristiques électro-thermo-mécaniques et de bruit de nanojauges couplées à des résonateurs M&NEMS issus de précédents travaux ont été étudiées. Nous avons ainsi montré qu'un nanofil en compression harmonique longitudinale à basse fréquence se comporte comme un ressort-amorti pouvant dominer la réponse harmonique du résonateur MEMS, malgré ses dimensions minuscules. De plus, nous avons montré pour la première fois que la réponse harmonique d'un résonateur pouvait être ajustée « in-situ » à l'aide du phénomène de rétro-action pieozorésistive en modifiant uniquement la polarisation des nanofils. Enfin, les performances théoriques du capteur de pression ont été estimées à partir de données expérimentales relevées sur différents types de résonateurs M&NEMS. Ces performances théoriques sont satisfaisantes vis-à-vis des spécifications du capteur, mais nécessiteront néanmoins d'être validées expérimentalement. / The market of pressure sensors for aeronautics is mature but still strongly growing, defined by a strong added value and a large innovation need. Bringing pressure sensors closer to hot parts of the plane, requires, for example, to re-consider the sensor architecture, including the sensitive element.In order to comply with these requirements, we have developed a resonant pressure sensor with motion detection by Si piezoresistive nanowires. A simplified version of the resonator without these nanogauges has been modelled, fabricated and characterized to confirm its good operation. In parallel, electro-thermo-mechanical and noise characteristics of nanogauges coupled to M&NEMS resonators arising from previous works have been studied. We have notably demonstrated that the damped-spring behavior of an harmonically longitudinally stressed nanowire at low frequency could govern the MEMS resonator response, despite its tiny dimensions. Moreover, we have shown for the first time that the resonator response could be tuned “in situ” owing to the piezoresistive back action phenomenon only by acting on the nanowire biasing.Eventually, the theoretical performances of the resonant pressure sensor have been estimated from experimental data on different kind of M&NEMS resonator. These theoretical performances satisfy the sensor specifications; nevertheless they need to be confirmed experimentally.
|
8 |
Design of Piezoresistive MEMS Force and Displacement SensorsWaterfall, Tyler Lane 01 September 2006 (has links) (PDF)
MEMS (MicroElectroMechanical Systems) sensors are used in acceleration, flow, pressure and force sensing applications on the micro and macro levels. Much research has focused on improving sensor precision, range, reliability, and ease of manufacture and operation. One exciting possibility for improving the capability of micro sensors lies in exploiting the piezoresistive properties of silicon, the material of choice in many MEMS fabrication processes. Piezoresistivity—the change of electrical resistance due to an applied strain—is a valuable material property of silicon due to its potential for high signal output and on-chip and feedback-control possibilities. However, successful design of piezoresistive micro sensors requires a more accurate model of the piezoresistive behavior of polycrystalline silicon. This study sought to improve the existing piezoresistive model by investigating the piezoresistive behavior of compliant polysilicon structures subjected to tensile, bending and combined loads. Experimental characterization data showed that piezoresistive sensitivity is greatest and mostly linear for silicon members subject to tensile stresses and nonlinear for beams in bending and combined stress states. The data also illustrated the failure of existing piezoresistance models to accurately account for bending and combined loads. Two MEMS force and displacement sensors, the integral piezoresistive micro-Force And Displacement Sensor (FADS) and Closed-LOop sensor (CLOO-FADS), were designed and fabricated. Although limited in its piezoresistive sensitivity and out-of-plane stability, the FADS design showed promise of future application in microactuator characterization. Similarly, the CLOO-FADS exhibited possible feedback control capability, but was limited by control circuit complexity and implementation challenges. The piezoresistive behavior exhibited by the Thermomechanical In-plane Microactuator (TIM) led to a focused effort to characterize the TIM's behavior in terms of force, displacement, actuation current and mechanism resistance. The gathered data facilitated the creation of an empirical, temperature-dependent model for the specific TIM. Based on the assumption of a nearly constant temperature for each current level, the model predicted the force and displacement for a given fractional change in resistance. Despite the success of the empirical model for the test TIM device, further investigation revealed the necessity of a calibration method to enable the model's application to other TIM devices.
|
9 |
Multi-physics Modeling and Calibration for Self-sensing of Thermomechanical In-plane MicroactuatorsTeichert, Kendall B. 09 July 2008 (has links) (PDF)
As technology advances and engineering capabilities improve, more research has focused on microscopic possibilities. Microelectromechanical systems (MEMS) is one area that has received much attention recently. Within MEMS much research has focused on sensing and actuation. This thesis presents work on a particular actuator of interest, the thermomechanical in-plane microactuator (TIM). Recent work has shown the possibility of a novel approach of sensing mechanical outputs of the TIM without ancillary sensors. This sensing approach exploits the piezoresistive property of silicon. However, to implement this approach a full model of the TIM would need to be obtained to describe the physics of the TIM, as well as development of a calibration approach to account for variations between devices. This thesis develops a multi-physics model of the TIM to realize this sensing approach. This model determines the mechanical state of the TIM using the same electrical signal that actuates the TIM. In this way the TIM is able to operate as a self-sensing actuator. To allow this multi-physics model to be tractable, work was done to simplify the thermal modeling of the TIM. A preliminary calibration approach was developed to adequately compensate for variations between devices. Thermal modeling and calibration were coupled with mechanical modeling and a developed sensing approach to form the full multi-physics model of the TIM. Validation testing of the model was performed with a modified calibration approach which showed good correlation with experimental data.
|
10 |
Single-Chip Scanning Probe MicroscopesSarkar, Niladri January 2013 (has links)
Scanning probe microscopes (SPMs) are the highest resolution imaging instruments available today and are among the most important tools in nanoscience. Conventional SPMs suffer from several drawbacks owing to their large and bulky construction and to the use of piezoelectric materials. Large scanners have low resonant frequencies that limit their achievable imaging bandwidth and render them susceptible to disturbance from ambient vibrations. Array approaches have been used to alleviate the bandwidth bottleneck; however as arrays are scaled upwards, the scanning speed must decline to accommodate larger payloads. In addition, the long mechanical path from the tip to the sample contributes thermal drift. Furthermore, intrinsic properties of piezoelectric materials result in creep and hysteresis, which contribute to image distortion. The tip-sample interaction signals are often measured with optical configurations that require large free-space paths, are cumbersome to align, and add to the high cost of state-of-the-art SPM systems. These shortcomings have stifled the widespread adoption of SPMs by the nanometrology community. Tiny, inexpensive, fast, stable and independent SPMs that do not incur bandwidth penalties upon array scaling would therefore be most welcome.
The present research demonstrates, for the first time, that all of the mechanical and electrical components that are required for the SPM to capture an image can be scaled and integrated onto a single CMOS chip. Principles of microsystem design are applied to produce single-chip instruments that acquire images of underlying samples on their own, without the need for off-chip scanners or sensors. Furthermore, it is shown that the instruments enjoy a multitude of performance benefits that stem from CMOS-MEMS integration and volumetric scaling of scanners by a factor of 1 million.
This dissertation details the design, fabrication and imaging results of the first single-chip contact-mode AFMs, with integrated piezoresistive strain sensing cantilevers and scanning in three degrees-of-freedom (DOFs). Static AFMs and quasi-static AFMs are both reported.
This work also includes the development, fabrication and imaging results of the first single-chip dynamic AFMs, with integrated flexural resonant cantilevers and 3 DOF scanning. Single-chip Amplitude Modulation AFMs (AM-AFMs) and Frequency Modulation AFMs (FM-AFMs) are both shown to be capable of imaging samples without the need for any off-chip sensors or actuators.
A method to increase the quality factor (Q-factor) of flexural resonators is introduced. The method relies on an internal energy pumping mechanism that is based on the interplay between electrical, mechanical, and thermal effects. To the best of the author???s knowledge, the devices that are designed to harness these effects possess the highest electromechanical Qs reported for flexural resonators operating in air; electrically measured Q is enhanced from ~50 to ~50,000 in one exemplary device. A physical explanation for the underlying mechanism is proposed.
The design, fabrication, imaging, and tip-based lithographic patterning with the first single-chip Scanning Thermal Microscopes (SThMs) are also presented. In addition to 3 DOF scanning, these devices possess integrated, thermally isolated temperature sensors to detect heat transfer in the tip-sample region. Imaging is reported with thermocouple-based devices and patterning is reported with resistive heater/sensors.
An ???isothermal electrothermal scanner??? is designed and fabricated, and a method to operate it is detailed. The mechanism, based on electrothermal actuation, maintains a constant temperature in a central location while positioning a payload over a range of >35??m, thereby suppressing the deleterious thermal crosstalk effects that have thus far plagued thermally actuated devices with integrated sensors.
In the thesis, models are developed to guide the design of single-chip SPMs and to provide an interpretation of experimental results. The modelling efforts include lumped element model development for each component of single-chip SPMs in the electrical, thermal and mechanical domains. In addition, noise models are developed for various components of the instruments, including temperature-based position sensors, piezoresistive cantilevers, and digitally controlled positioning devices.
|
Page generated in 0.0711 seconds