• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The conversion of low grade heat into electricity using the Thermosyphon Rankine Engine and Trilateral Flash Cycle

Bryson, Matthew John, mbryson@bigpond.net.au January 2007 (has links)
Low grade heat (LGH) sources, here defined as below 80ºC, are one group of abundant energy sources that are under-utilised in the production of electricity. Industrial waste heat provides a convenient source of concentrated LGH, while solar ponds and geothermal resources are examples of sustainable sources of this energy. For a number of years RMIT has had two ongoing, parallel heat engine research projects aimed at the conversion of LGH into electricity. The Thermosyphon Rankine Engine (TSR) is a heat engine that uses water under considerable vacuum. The other research stream uses a hydrocarbon based working fluid in a heat engine employing the Trilateral Flash Cycle (TFC). The TSR Mk V was designed and built as a low cost heat engine for the conversion of LGH into electricity. Its main design advantages are its cost and the employment of only one moving part. Using the data gained from the experimental rig, deviations from the expected results (those derived theoretically) were explored to gain insight for further development. The results from the TSR rig were well below those expected from the design specifications. Although the experimental apparatus was able to process the required heat energy, the efficiency of conversion fell well below the expected 3% and was approximately 0.2%. The inefficiency was explained by a number of contributing factors, the major being form drag upon the rotor that contributed around 2/3 of the losses. Although this was the major cause of the power loss, other factors such as the interference with the rotor by the condensate on its return path contributed to the overall poor performance of the TSR Mk V. The RMIT TFC project came about from exploration of the available academic literature on the subject of LGH conversion. Early work by researchers into applying Carnot's theory to finite heat sources led them to explore the merits of sensible heat transfer combined with a cycle that passes a liquid (instead of a gas) though an expander. The results showed that it was theoretically possible to extract and convert more energy from a heat source of this type using this method than using any other alternative. This previous research was targeted at heat sources above 80ºC and so exploration of the theoretical and empirical results for sources below this temperature was needed. Computer models and an experimental rig using isopentane (with a 28ºC boiling point at atmospheric pressure) were produced to assess the outcomes of employing low temperature heat sources using a TFC. The experimental results from the TFC research proved promising with the efficiency of conversion ranging from 0.8% to 2.4%. Although s uch figures seem poor in isolation, it should be noted that the 2.4% efficiency represents an achievement of 47% of the theoretical ideal conversion efficiency in a rig that uses mainly off-the-shelf components. It also confirms that the TFC shows promise when applied to heat sources less than 80ºC.

Page generated in 0.0529 seconds