• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solar process heat in the food industry : methodological analysis and design of a sustainable process heat supply system in a brewery and a dairy

Müller, Holger January 2016 (has links)
The food industry is a large consumer of industrial energy. A very large portion of this energy is needed in the form of thermal energy at medium to low temperatures. Fossil fuels remain the dominant sources of this energy. This combination provides various possibilities to reduce energy consumption and CO2 emissions with heat recovery, but also with the integration of solar process heat. Energy efficiency must provide the context, or background, of such considerations, and is therefore a very important aspect of them. It is a complex task to design an efficient heat supply with a variety of energy sources. An analysis of standards for energy audits, guides for energy efficiency and guides for solar process heat integration confirms that complexity. However, no available methodology considers all the necessary steps. These must range from analysis of the existing heat supply to the redesign of an efficient heat supply system. The focus must be on heat sources with waste heat and on solar process heat that might be used to complement the conventional sources. The design of a process heat system is mainly the task of design engineers in engineering offices. Specific tools and measures are needed to support these experts. However, the companies of the food industry sector employ their own energy engineers for energy issues. These people are actually the decision makers responsible for the configuration of the company energy supply systems, who also possess knowledge of the processes in their industry subsector. The expertise of the energy engineers varies within a broad range and is also connected to their area of responsibility. Therefore, it is important to consider these energy engineers when developing a methodology. The development of the methodology proposed herein consists first of the configuration of the tools and measures, which were assigned to four elements and functions. Second, the methodology so developed was applied at two companies in cooperation with their energy engineers, in detailed case studies. The feedback from the energy engineers is therefore a main objective and provides a background for evaluation of the usability of the methodology. It demonstrates the expertise required of the energy engineers, for the application of the tools and measures provided. Moreover, the development and application of the methodology involving real companies demonstrates the necessity of getting feedback from energy engineers. That finding is very important, and has been insufficiently considered in previous guides or methodologies. It is proposed that further work be aimed at providing additional case studies to extend the use of this methodology to other parts of the food industry.
2

The conversion of low grade heat into electricity using the Thermosyphon Rankine Engine and Trilateral Flash Cycle

Bryson, Matthew John, mbryson@bigpond.net.au January 2007 (has links)
Low grade heat (LGH) sources, here defined as below 80ºC, are one group of abundant energy sources that are under-utilised in the production of electricity. Industrial waste heat provides a convenient source of concentrated LGH, while solar ponds and geothermal resources are examples of sustainable sources of this energy. For a number of years RMIT has had two ongoing, parallel heat engine research projects aimed at the conversion of LGH into electricity. The Thermosyphon Rankine Engine (TSR) is a heat engine that uses water under considerable vacuum. The other research stream uses a hydrocarbon based working fluid in a heat engine employing the Trilateral Flash Cycle (TFC). The TSR Mk V was designed and built as a low cost heat engine for the conversion of LGH into electricity. Its main design advantages are its cost and the employment of only one moving part. Using the data gained from the experimental rig, deviations from the expected results (those derived theoretically) were explored to gain insight for further development. The results from the TSR rig were well below those expected from the design specifications. Although the experimental apparatus was able to process the required heat energy, the efficiency of conversion fell well below the expected 3% and was approximately 0.2%. The inefficiency was explained by a number of contributing factors, the major being form drag upon the rotor that contributed around 2/3 of the losses. Although this was the major cause of the power loss, other factors such as the interference with the rotor by the condensate on its return path contributed to the overall poor performance of the TSR Mk V. The RMIT TFC project came about from exploration of the available academic literature on the subject of LGH conversion. Early work by researchers into applying Carnot's theory to finite heat sources led them to explore the merits of sensible heat transfer combined with a cycle that passes a liquid (instead of a gas) though an expander. The results showed that it was theoretically possible to extract and convert more energy from a heat source of this type using this method than using any other alternative. This previous research was targeted at heat sources above 80ºC and so exploration of the theoretical and empirical results for sources below this temperature was needed. Computer models and an experimental rig using isopentane (with a 28ºC boiling point at atmospheric pressure) were produced to assess the outcomes of employing low temperature heat sources using a TFC. The experimental results from the TFC research proved promising with the efficiency of conversion ranging from 0.8% to 2.4%. Although s uch figures seem poor in isolation, it should be noted that the 2.4% efficiency represents an achievement of 47% of the theoretical ideal conversion efficiency in a rig that uses mainly off-the-shelf components. It also confirms that the TFC shows promise when applied to heat sources less than 80ºC.
3

Shape Memory Based Self-Powered Fluid Pump

Katzenburg, Stefan, Spanke, Nina, Langhoff, Moritz, Faller, Clemens 13 February 2024 (has links)
In the range of 25°C - 80°C (ultra-low grade heat), a large quantity of waste heat from various processes is available unused. Special alloys made of nickel and titanium, so-called Shape Memory Alloys (SMA), could be an alternative technology to Organic Rankine Cycles to make this energy usable in the low power range. The 'THEAsmart 2' research project is therefore investigating the service life and energy lifecycle of this material to test the benefits of shape memory alloys in energy recovery and the efficiency levels that can be achieved. To this end, a demonstration prototype is being built that converts thermal energy into rotary motion. The next step is to link the demonstration prototype with a conventional fluid pump to create an SMA fluid pump that is driven by the thermal energy of the fluid to be pumped. The advantage of such a pump would be that it would be energy-independent, i.e. it would be operated solely by the thermal energy of the fluid without an electrical connection. Furthermore, such a pump could contribute to energy savings if it is used in cooling circuits in which the thermal energy of the fluid is the waste product from another process. In this case, it replaces an electric pump and utilizes the 'waste product' heat. The aim of the project is to investigate how and whether coil springs made of shape memory alloy are suitable for energy recovery. This is considered via the energy lifecycle: if more energy is required to manufacture a spring than this spring can convert kinetic energy from thermal energy in its lifecycle, then its use for energy recovery does not make sense in principle. As a secondary result of this research, statements about the efficiency of shape memory alloy coil springs and statements about their service life are expected.
4

Performance evaluation in post integrated organic Rankine cycle systems : A study on operational systems utilizing low grade heat

Lindqvist, Jakob, Faber, Niklas January 2018 (has links)
Organic Rankine cycles can be integrated with district heating systems and in applications of biogas digestion. Evaluating the performance of the installations by Againity AB in Ronneby and Norrköping, Sweden, is a unique opportunity which can support the establishment of ORC technology in the waste heat recovery market, unveiling its feasibilities and limitations. Operational data gathered from October 2017 until April 2018, provides this thesis with information about the ORC-systems. A method using Coolprop and Matlab has been used to detect steady-state series in the Ronneby installation using moving standard deviation and inclination criteria. By screening the data and selecting these series, analytical equations can be used to determine the performance of the installations and map the linear relationship between variables like pressure and generator power. The largest impact on the system in Ronneby is developed in the condenser. Large coolant volume flow creates large heat sink capacity and higher generator efficiency and power. However, with increasing generator power the condenser pressure decrease. Lower condenser pressure results in a decreased evaporation pressure, which could be maintained if the pump was able to run at higher frequencies. The Plant in Norrköping needs further studies and a review of its sensors. The code in Matlab is a resource to Againity and Linköpings university for future work in performance evaluation. It can be used to detect errors in energy balance, local readings, and picture the machines' performance graphically.
5

Potentiell koppling mellan elektrolys och landbaseradfiskodling : En analys av behov och tillgång på syrgas och värme

Hansen, Per January 2021 (has links)
Det kommer ske en stor utbyggnad av elektrolys för produktion av vätgas i Sverigeoch övriga världen. För att sänka produktionskostnaden och därmed göra vätgasenbilligare analyserar denna rapport vilket behov av syrgas och värme som en landbaserad fiskodling har, samt hur mycket syrgas och värme fiskodlingen skulle behövaköpa från en elektrolysör. Analysen visar att de arter som används i studien - tilapia(Oreochromis, Oreochromis,. Alcolapia), regnbåge (Oncorhynchus mykiss) och lax(Salmo salar) - i en odling som producerar 40 ton fisk om året skulle förbruka cirka1,16 procent av syrgasen och cirka 0,35 procent av värmen från en 3 MW PEMelektrolysör. Försäljningsvärdet av syrgasen och värmen från en 3 MW elektrolysörberäknas till cirka 695 000 SEK/år för syrgasen och cirka 1 830 000 SEK/år för värmen. Den genomsnittliga kostnaden för syrgas och värme för arterna i studien i enodling på 40 ton/år beräknas till 8900 SEK/år för syrgasen och 6400 SEK/år förvärmen i en landbaserad fiskodling. / There will be a major expansion of electrolysis for production of hydrogen in Sweden and the rest of the world. To reduce production costs and thus make hydrogencheaper, this report analyzes how much oxygen and heat a fish farm consumes andtherefore would need to buy from an electrolyser. The analysis shows that the species used in the study - tilapia (Oreochromis, Oreochromis, Alcolapia), rainbow(Oncorhynchus mykiss) and salmon (Salmo salar) - in a farm that produces 40 tonsof fish per year would consume 1.16 percent of the oxygen and 0,35 percent of theheat produced from a 3 MW PEM electrolyzer. The value of the oxygen and theheat from a 3 MW electrolyser is calculated at SEK 694,939/year for the oxygenand SEK 1,829,813/year for the heat. The average cost for the species in the studyin a 40 tonne/year fish farm is calculated at SEK 8,900/year for the oxygen and SEK6,400/year for the heat in a land-based fish farm.

Page generated in 0.0809 seconds