• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 25
  • 23
  • 20
  • 19
  • 16
  • 12
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utveckling av dataanalysprogram för Opcon Powerbox / Development of data analysis software for Opcon Powerbox

Holmgren, Magnus January 2010 (has links)
Opcon Powerbox is a product developed by Opcon together with the underlying company SRM (Svenska Rotor Maskiner) where surplus heat from the industry is used through an Organic Rankine Cycle (ORC)–process to produce electricity. An ORC-process is a thermodynamic circle process in which a refrigerant is used as the working fluid. The refrigerant makes it possible for the circle process to operate at lower temperatures than the conventional Rankine process. In this master’s thesis a data analysis software for the Opcon Powerbox has been developed in which measurement data is retrieved and handled from the Opcon Powerbox. The software performs calculations and analysis on the data with which the system can be evaluated. This thesis has been carried out with SRM.
2

Exergoeconomic Analysis of Solar Organic Rankine Cycle for Geothermal Air Conditioned Net Zero Energy Buildings

Rayegan, Rambod 12 July 2011 (has links)
This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.
3

Implementation of an Organic Rankine cycle on a Stepping furnace

Pižorn, Žiga January 2014 (has links)
In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed. The study is a case study at the company Štore&STEEL d.o.o. with intentions of realization. In a steel mill a stepping furnace is used to preheat the steel billets for later forging. The stepping furnace is gas fired and already has recuperation of the inlet air implemented. Still there is high temperature of the stack after recuperation, which makes application of an ORC worth of researching and modeling.First the flue gas over one year of furnace operation is analyzed in terms of temperature and volumetric flow. Mass flow and heat capacity are calculated. A layout of an ORC is proposed and modeled in IPSEpro for different temperatures of the flue gas resulting in different output powers and efficiencies. For each temperature an economic viability calculation with the method of reference cost of electric energy is done.The results are presented and the best design and conditions are proposed. The results of the thesis proved that further detailed measurements and calculation are worthwhile , as the flue gas from the stepping furnace has satisfactory conditions to make an application of an Organic Rankine cycle viable. Also the least ammount of state support to fulfill the companies conditions on return of investment is calculated and presented. Finally there are additional measurements and calculations suggested.
4

Experimental investigation of scroll based organic Rankine systems

Tarique, Md. Ali 01 April 2011 (has links)
In this thesis, an experimental research is conducted on scroll-based Organic Rankine Cycle (ORC) focusing on the expansion process. An important feature of the ORC is the ability to utilize low or moderate temperature heat sources derived from renewable energy such as concentrated solar radiation, biomass/biofuels combustion streams, geothermal heat and waste heat recovery. The ORC is more appropriate than steam Rankine cycle to generate power from low capacity heat sources (5-500 kW thermal). For example, expansion of superheated steam from 280oC/1000 kPa to a pressure corresponding to 35oC saturation requires a volume ratio as high as 86, whereas for the same operating conditions toluene shows an expansion ratio of 6 which can be achieved in a single stage turbine or expander. The objective of this work is to experimentally study the performance of a selected refrigeration scroll compressor operating in reverse as expander in an ORC. To this purpose, three experimental systems are designed, built and used for conducting a comprehensive experimental programme aimed at determining the features of the expansion process. In preliminary tests the working fluid utilized is dry air while the main experiments are done with the organic fluid R134a. Experimental data of the scroll expander are collected under different operating conditions. Power generation in various conditions is analyzed in order to determine the optimum performance parameters for the scroll expander. In addition, thermodynamic analysis of the system is conducted through energy and exergy efficiencies to study the system performance. Based on the experimental measurements, the optimum parameters for an ORC cycle operating with the Bitzer-based expander-generator unit are determined. The cycle energy and exergy efficiencies are found 5% and 30% respectively from a heat source of 120oC. / UOIT
5

Modeling And Performance Evaluation Of An Organic Rankine Cycle (orc) With R245fa As Working Fluid

Bamgbopa, Musbaudeen Oladiran 01 July 2012 (has links) (PDF)
This thesis presents numerical modelling and analysis of a solar Organic Rankine Cycle (ORC) for electricity generation. A regression based approach is used for the working fluid property calculations. Models of the unit&rsquo / s sub-components (pump, evaporator, expander and condenser) are also established. Steady and transient models are developed and analyzed because the unit is considered to work with stable (i.e. solar + boiler) or variable (i.e. solar only) heat input. The unit&rsquo / s heat exchangers (evaporator and condenser) have been identified as critical for the applicable method of analysis (steady or transient). The considered heat resource into the ORC is in the form of solar heated water, which varies between 80-95 0C at a range of mass flow rates between 2-12 kg/s. Simulation results of steady state operation using the developed model shows a maximum power output of around 40 kW. In the defined operation range / refrigerant mass flow rate, hot water mass flow rate and hot water temperature in the system are identified as critical parameters to optimize the power production and the cycle efficiency. The potential benefit of controlling these critical parameters is demonstrated for reliable ORC operation and optimum power production. It is also seen that simulation of the unit&rsquo / s dynamics using the transient model is imperative when variable heat input is involved, due to the fact that maximum energy recovery is the aim with any given level of heat input.
6

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine

Duong, Tai Anh 05 October 2011 (has links)
This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study about significant properties of suitable working fluids. The chosen working fluid, R134a, was used to operate at the dry condition when it exited the steam piston engine. Furthermore, R134a is environmentally friendly with low environmental impact. It was also compatible with sealing materials. There were calibrations for the components of the combined Rankine cycle. The efficiency of the heat exchanger converting exhaust heat from the diesel engine to vaporize R134a was 89%. The average efficiency of the generator was 50%. The hydraulic pump used for the combined Rankine cycle showed a transporting problem, as vapor-lock occurred when the pump ran for about 1 minute. The output of the combined Rankine cycle was normalized to compensate for the parasitic losses of a virtual vane pump used in hydraulic systems for the 6 liter diesel engines. There were three different vane pump widths from different pumps to compare frictional loss. The pump with the smallest vane width presented the least frictional mean effective pressure (fmep) (0.26 kPa) when scaled with the displacement of the GMC Sierra 6 liter diesel engine. The power output of the Rankine cycle was scaled to brake mean effective pressure (bmep) to compare with the frictional mean effective pressure. The maximum bmep was at 0.071 kPa when diesel engine had rotational speed at 2190 RPM. The power outputs of the organic Rankine compensated partially the frictional loss of the vane pumps in the 6 liter diesel engine. By using R134a, the condensing pressure was 0.8 MPa; hence, the power outputs from steam engine were limited. Therefore, refrigerants with lower condensing pressure were needed. There were proposal for improvement of the organic Rankine by substituting R134a by R123 (0.1 MPa), R21 (0.2 MPa), and R114 (0.25 MPa) . / text
7

Development of a low temperature geothermal organic rankine cycle standard.

Taylor, Leighton John January 2015 (has links)
The growth in renewable electricity generation is forecast to continue as fossil fuel levels decrease and carbon dioxide emissions are penalized. The growth in geothermal is becoming constrained as conventional high-temperature sources are fully exploited. Geothermal can be a cost competitive base load power source. Governments and utilities are looking at the potential of electricity generation from low temperature geothermal resources for future development. This technology, unlike the high and medium temperature, is not mature and there are a number of companies looking at entering the Organic Rankine Cycle (ORC) market. This thesis aims to provide a necessary step for reliable commercial develop this technology by developing the first draft of a low temperature geothermal ORC standard. The standard outlines the critical stages of a geothermal ORC project as the Prospecting stage; Pre-Feasibility stage, Feasibility stage, and the Detailed Design stage. The standard is unlike other standards that are used to design one component; this standard guides the engineers though the various critical steps of the ORC design to correctly assess the geothermal resource and to inform design and investment decisions. The standard provides particular guidance on critical factors in ORC design, primarily the working fluid selection and component selection limitations. Experienced industry engineers have provided advice and insight regarding the critical design points and processes. The draft standard was reviewed by a number of geothermal industry engineers who have worked with large scale, conventional ORCs. They each commented on the standard from their prospective in the industry and gave general feedback was that it is a technically relevant standard that can be used as a potential start point to develop a new standard for the low temperature binary ORC industry. The final draft standard has been submitted to the ISO for consideration. This thesis first sets out the general background on the state of the art and the industry for lowtemperature binary ORC power plants, and provides the review assessment of the standard draft. However, the bulk of the thesis is the standard itself. The standard represents a substantial contribution to the mechanical and thermal systems engineering field.
8

Techno-Economic Analysis of Organic Rankine Cycles for a Boiler Station : Energy system modeling and simulation optimization

Hudson, Jamel January 2019 (has links)
The Organic Rankine Cycle (ORC) may be the superior cycle for power generation using low temperature and low power heat sources due to the utilization of high molecular mass fluids with low boiling points. They are flexible, simple, easy to operate and maintain, and offer many possible areas of applications including waste heat recovery and power generation from biomass, geothermal and even solar energy. Therefore, they may prove to be of significant importance in reducing global greenhouse gas emission and in the mitigation of climate change. In this thesis the technical feasibility and economic profitability of implementing an ORC in a district heating boiler station is investigated. A model of ORC connected to the hot water circuit of one of the biomass boilers of the boiler station is simulated. The achieved evaporation temperature is estimated to 135 degrees C and the condensation temperature is found to vary in the range of about 70-100 degrees C. The results show that it is both possible and profitable to implement an ORC in the studied boiler station. A maximum net present value of 2.3 MSEK is achieved for a 400 kW system and a maximum internal rate of return of 8.5%, equivalent to a payback period of 9.5 years, is achieved for a 300 kW system. Furthermore, the investment is found to be most sensitive to changes in the electricity price, net electric efficiency and capital expenditure cost.
9

Power Usage Effectiveness Improvement of High-Performance Computing by Use ofOrganic Rankine Cycle Waste Heat Recovery

Tipton, Russell C. 05 June 2023 (has links)
No description available.
10

Economic, Environmental, and Energetic Performance Analysis of a Solar Powered Organi Rankine Cycle (ORC)

Spayde, Emily Diane 08 December 2017 (has links)
In this dissertation, different configurations of solar powered organic Rankine cycles (ORC) are investigated. The configurations include: a basic ORC, a regenerative ORC (R-ORC), and a basic ORC with electric energy storage (EES) (ORC-EES). The basic ORC and the R-ORC are evaluated using different dry organic fluids based on the first and second laws of thermodynamics and electricity production. The performance of both ORC systems is based on the potential for primary energy consumption (PEC) and carbon dioxide emission (CDE) savings, the electricity production, and the available capital cost (ACC) for the system. The R-ORC and basic ORC are both evaluated in Jackson, MS and Tucson, AZ to determine the effect of hourly solar irradiation and ambient temperature on both systems. For the basic ORC a parametric analysis is performed to determine the effects of cycle pressure, temperature, solar collector area, and turbine efficiency on the system performance. Similarly, for the R-ORC, a parametric analysis investigating the effect of open feed organic fluid heater intermediate pressure and turbine efficiency on the R-ORC is performed. Finally an ORC connected to an EES device located in Tucson, AZ is studied. The ORC-EES supplies electricity to three different commercial buildings. The ORC-EES is modeled to be charging when irradiation is available and discharging when there is not enough irradiation to generate electricity from the ORC. The performance of the system is based on the amount of electricity supplied, the potential for PEC, CDE, and cost savings, and the ACC. The effect of solar collector area on the percentage of supplied electricity, EES device size, and cost savings is also studied. It was determined that all the evaluated ORC configurations have the potential to produce PEC, CDE, and cost savings, but their performance is affected by the organic working fluid, solar collector area, and the location where the system is installed.

Page generated in 0.0756 seconds