Spelling suggestions: "subject:"thermosyphons"" "subject:"thermosyphones""
1 |
Experimental study of cooling limit in thermosiphon boiling /Jenkins, Neil Douglas, January 1998 (has links)
Thesis (Ph. D.)--Lehigh University, 1998. / Includes vita. Includes bibliographical references (leaves 153-156).
|
2 |
Laminar natural convection in vertical tubes with one end open to a large reservoirWu, Yissu 10 March 1995 (has links)
Graduation date: 1995
|
3 |
Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant /Sabharwall, Piyush. January 1900 (has links)
Thesis (Ph. D., Nuclear Engineering)--University of Idaho, January 30, 2009. / Major professor: Fred Gunnerson. Includes bibliographical references. Also available online (PDF file) by subscription or by purchasing the individual file.
|
4 |
Modeling the transient response of a thermosyphon /Storey, J. Kirk, January 2003 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Mechanical Engineering, 2003. / Includes bibliographical references (p. 133-136).
|
5 |
Transient performance of closed loop thermosyphons incorporating thermal storageBenne, Kyle S. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 3, 2007) Includes bibliographical references.
|
6 |
Transient modelling of a loop thermosyphon : transient effects in single and two phase natural circulation thermosyphon loops suitable for the reactor cavity cooling of a pebble bed modular reactorRuppersberg, Johannes Coenraad 03 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2008. / ENGLISH ABSTRACT: The focus of this project was the application of a passive device in the form of a loop
thermosyphon as a reactor cavity cooling system (RCCS) for a Pebble Bed Modular
Reactor. An extensive literature review showed that loop thermosyphons have been
widely researched, both theoretically and experimentally. In the review attention has
specifically been given to matters such as safety, instability, control and mathematical
modelling.
One of the objectives of the project was to build one of the axially symmetric sections
of Dobson’s (2006) proposed full scale RCCS using a scaled down version consisting
of a single loop heated by a section of the reactor pressure vessel and cooled by a tank
of water. The second objective was to derive a theoretical model that could be used in a
computer code to simulate the experiment. The theory and experiment would then be
compared in order to verify the code.
The mathematical model created used the following three major assumptions: quasistatic
flow, incompressible liquid and vapour and one dimensionality. The conservation
equations in the form of a set of difference equations with the appropriate closure
equations were then solved explicitly. It was found that the theoretical results were
heavily influenced by the surface optical properties as well as the heat transfer
coefficients. The emissivity influenced the transition point from single to two-phase
flow as well as the condenser outlet temperature. The single phase heat transfer
coefficients influenced the condenser outlet temperature significantly while it was
found that for two phase flow the combination of the available boiling and condensation
heat transfer coefficients had only minor effects on the end results.
A stainless steel and aluminium thermosyphon loop was built using water as the
working fluid. A stainless steel heater plate provided the heat input while a 200 L water
tank was the heat sink. Temperature and flow rate measurements were recorded as a
function of time with various heating/cooling transients from start-up to steady state for
three operating modes. The three operating modes were single phase, two-phase and
heat pipe mode. It was found that the theoretical temperatures correspond reasonably well with the
experimental temperatures. The time predicted by the theoretical model to reach the
operating temperature was however somewhat longer than for the experimental. This is
to be expected when considering that there is some uncertainty pertaining to the heat
transfer coefficients as well as surface emissive properties. The correspondence of the
theoretical and experimental fin temperatures was poor due to significant thermal
stratification of the air separating the heater plate and fins. Several shortcomings in the
theoretical model as well as the experimental setup were identified and discussed.
The conclusion was reached that this exploratory study showed that the loop
thermosyphon is a viable option for the RCCS and that the mathematical model is a
viable theoretical simulation tool. Several recommendations were made for further
study to address and overcome the shortcomings identified in the theoretical and
experimental models in order to prove this conclusion. Amongst these is the
determination of better material surface properties and heat transfer coefficients and
improved mass flow rate measurement. Investigating scaling issues, natural convection
outside the loop and updating of the computer program is also recommended. / AFRIKAANSE OPSOMMING: Die fokus van hierdie projek was die toepassing van passiewe apparatuur, in die vorm
van ‘n geslote lus termoheuwel, as ‘n reaktor kamer verkoellings stelsel vir die korrel
bed modulêre reaktor. Die literatuur studie wys dat hierdie tegnologie reeds
breedvoerig ondersoek is teoreties sowel as eksperimenteel. In die literatuur oorsig
word aandag spesifiek gegee aan veiligheid, onstabiliteit, beheer en modelleering.
Een van die doelwitte van die projek was om ‘n klein skaalse model te bou van een van
die aksiaal simmetriese seksies van Dobson (2006) se voorgestelde volskaalse reaktor
kamer verkoellings stelsel. Die model bestaan uit n enkele lus verhit deur ‘n seksie van
die reaktor drukvat en verkoel deur ‘n tenk vol water. Die tweede doelwit was die
afleiding van ‘n teoretiese model wat in ‘n rekenaar program gebruik kan word om die
eksperiment te simuleer. Die teoretiese en eksperimentele data kan dan vergelyk word
om die geldigheid van die program te toets.
Die volgende aanames is gemaak tydens die afleiding van die wiskundige model:
kwasi-statiese vloei, onsamedrukbare vloeistof en gas en een dimensionalitiet. Die
behouds wette is in die vorm van ‘n stel differensie vergelykings met die toepasbare
sluitings vergelykings eksplisiet opgelos. Dit is bevind dat die teoretiese resultate
swaar beinvloed is deur die materiaal oppervlak eienskappe sowel as die
warmteoordrag koëffisiënte. Die emisiviteit beinvloed die oorgangs punt van enkel na
twee fase vloei sowel as die kondenser uitlaat temperatuur. Die enkel fase
warmteoordrag koëffisiënt het n beduidende invloed op die kondenser uitlaat
temperatuur terwyl dit voorkom asof die spesifieke kombinasie van die koking en
kondensasie warmteoordrag koëffisiënte minimale invloed op die resultate het in die
twee fase gebied.
Vlekvrye staal en aluminium is gebruik om die lus te bou met water as die verkoelings
middel. Warmte is toegevoeg tot die stelsel deur ’n vlekvrye staal verhittings plaat
terwyl ‘n 200 L water tenk die warmte onttrek het. Temperatuur en massa vloei tempo
is aangeteken as ‘n funksie van tyd vir verskeie verhitting/verkoellings oorgangs
gedragte vanaf begin tot bestendige toestand vir drie bedryfs modusse. Die drie bedryfs
modusse was enkel fase, twee fase en hitte pyp modus. Dit is bevind dat die teoretiese temperature redelik goed ooreengekom het met die
eksperimentele waardes. Die tyd wat dit neem om by die bedryfs temperatuur te kom
soos voorspel deur die teorie is egter langer as wat in die eksperiment gevind is. Dit is
te verstane wanneer die onsekerheid in die warmteoordrag koëffisiënte en materiaal
oppervlak eienskappe in ag geneem word. Die fin temperature het ‘n swakker
ooreenkoms getoon as gevolg van beduidende termiese stratifikasie van die lug tussen
die fin en verhittings plaat. Verskeie tekortkominge in die teoretiese model en
eksperimentele opstelling is geïdentifiseer en bespreek.
Die gevolgtrekking is gemaak dat die ondersoek bewys dat geslote lus termoheuwels ‘n
lewensvatbare opsie is vir ‘n reaktor kamer verkoellings stelsel en dat die wiskundige
model lewensvatbaar is vir teoretiese simulasie. Verskeie aanbevelings word egter
gemaak om die tekortkominge in die teoretiese en eksperimentele modelle aan te spreek
om so doende die gevolgtrekking te staaf. Dit word aanbeveel dat beter waardes vir die
materiaal oppervlak eienskappe en warmteoordrag koëffisiënte gevind word en
verbeterde massa vloei meetings gedoen word. Dit word verder aanbeveel om
skaleering asook natuurlike konveksie buite die lus te ondersoek en om die rekenaar
program by te werk.
|
7 |
Experimental and Numerical Study of Dual-Chamber ThermosyphonPal, Aniruddha 18 May 2007 (has links)
An experimental and numerical investigation was conducted to study boiling and condensation - the two most important phenomena occurring in a dual-chamber thermosyphon. Boiling experiments were carried out using water at sub-atmospheric pressures of 9.7, 15 and 21 kPa with a three-dimensional porous boiling enhancement structure integrated in the evaporator. Sub-atmospheric pressure boiling achieved heat fluxes in excess of 100 W/cm2 with negligible incipience superheat, for wall temperatures below 85 oC. Reduced pressures resulted in reduction of heat transfer coefficient with decrease in saturation pressure. The boiling enhancement structure showed considerable heat transfer enhancement compared to boiling from plain surface. Increased height of the structure decreased the heat transfer coefficient and suggested the existence of an optimum structure height for a particular saturation pressure. A parametric study showed that a reduction in liquid level of water increased the CHF for boiling with plain surfaces. For boiling with enhanced structures, the liquid level for optimum heat transfer increased with increasing height of the enhanced structure.
A numerical model was developed to study condensation of water in horizontal rectangular microchannels of hydraulic diameters 150-375 µm. The model incorporated surface tension, axial pressure gradient, liquid film curvature, liquid film thermal resistance, gravity and interfacial shear stress, and implemented successive solution of mass, momentum and energy balance equations for both liquid and vapor phases. Rectangular microchannels achieved significantly higher heat transfer coefficient compared to a circular channel of similar hydraulic diameter. Increasing the inlet mass flow rate resulted in a higher heat transfer coefficient. Increasing the inlet temperature difference between wall and vapor led to a thicker film and a gradually decreasing heat transfer coefficient. Increasing the channel dimensions led to higher heat transfer coefficient, with a reduction in the vapor pressure drop along the axial direction of the channel.
The unique contributions of the study are: extending the knowledge base and contributing unique results on the thermal performance of thermosyphons, and development of a analytical model of condensation in rectangular microchannels, which identified the system parameters that affects the flow and thermal performance during condensation.
|
8 |
EXPERIMENTAL INVESTIGATION OF THE THERMAL PERFORMANCE OF VERTICAL AND ELBOW THERMOSYPHONSHammouda, Mohamed January 2021 (has links)
The thermal performance of two thermosyphons with different geometries was experimentally investigated in this study. The first thermosyphon utilized a 310 mm long vertical evaporator and a 385 mm long condenser section that was inclined at 5 degrees from the vertical. The second was an elbow configuration with a 140 mm long vertical evaporator and a 190 mm long condenser oriented 8 degrees from the horizontal. Both thermosyphons were made of internally grooved copper tubing with an outer diameter of 15.87 mm, wall thickness of 0.5 mm and a nominal groove height of 0.3 mm. Tests were performed over a range of input heat fluxes where the condenser was cooled by flowing water around the condenser with inlet temperature of 10°C, 20°C, and 35°C. The effects of incrementally increasing and decreasing heat flux was investigated for the elbow thermosyphon. Temperature measurements along the thermosyphon were taken when incrementally changing the heat flux from 0.5 to 11 W/m2 for the first thermosyphon and 0.3 to 6 W/m2 for the second thermosyphon.
Internal flow regimes were characterized using temperature transient profiles and compared to existing flow regime maps for closed thermosyphons suggested by Smith et al. (2018: Part a and Part b) and Terdoon et al. (1997). The temperature transients along the evaporator for the first thermosyphon settled to a more uniform profile as heat flux was increased. For the second thermosyphon the temperature profiles suggested a change to a more dynamic flow in the evaporator at heat flux of approximately 6 W/m2. The elbow thermosyphon showed evidence of a significant hysteresis in the evaporator performance at moderate heat fluxes between 2 and 8 W/cm2. Comparisons were made between the two thermosyphons to study the effects of inclination angle and the feasibility of angle corrections to the Nusselt film condensation model from Guichet and Jouhara (2020). A modification to the Rohsenow condensation model from Guichet and Jouhara (2020) was recommended for the first thermosyphon showing good representation of the condenser performance. The evaporator performance results were compared to existing models from the literature. / Thesis / Master of Applied Science (MASc)
|
9 |
Operation and Heuristic Design of Closed Loop Two-Phase Wicked Thermosyphons (CLTPWT) for Cooling Light Emitting Diodes (LEDs)Remella Siva Rama, Karthik 15 May 2018 (has links)
No description available.
|
10 |
Inside-pipe heat transfer coefficient characterisation of a one third height scale model of a natural circulation loop suitable for a reactor cavity cooling system of the Pebble Bed Modular ReactorSittmann, Ilse 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: The feasibility of a closed loop thermosyphon for the Reactor Cavity Cooling
System of the Pebble Bed Modular Reactor has been the subject of many research
projects. Difficulties identified by previous studies include the hypothetical
inaccuracies of heat transfer coefficient correlations available in literature. The
aim of the research presented here is to develop inside-pipe heat transfer
correlations that are specific to the current design of the RCCS.
In order to achieve this, a literature review is performed which identifies reactors
which employ closed loop thermosyphons and natural circulation. The literature
review also explains the general one-dimensional two-fluid conservation
equations that form the basis for numerical modelling of natural circulation loops.
The literature review lastly discusses available heat transfer coefficient
correlations with the aim of identifying over which ranges and under which
circumstances these correlations are considered accurate. The review includes
correlations commonly used in natural circulation modelling in the nuclear
industry in aims of identifying correlations applicable to the modelling of the
proposed RCCS.
One of the objectives of this project is to design and build a one-third-height-scale
model of the RCCS. Shortcomings of previous experimental models were
assessed and, as far as possible, compensated for in the design of the model.
Copper piping is used, eliminating material and surface property uncertainties.
Several sight glasses are incorporated in the model, allowing for the visual
identification of two-phase flow regimes. An orifice plate is used allowing for bidirectional
flow measurement. The orifice plate, thermocouples and pipe-in-pipe
heat exchangers are calibrated in-situ to minimize experimental error and aid
repeatability.
Twelve experiments are performed with data logging occurring every ten seconds.
The results presented here are limited to selected single and two-phase flow
operating mode results. Error analyses and repeatability of experimental
measurements for single and two-phase operating modes as well as cooling water
mass flow rates are performed, to show repeatability of experimental results.
These results are used to mathematically determine the experimental inside-pipe
heat transfer coefficients for both the evaporator and condenser sections. Trends
in the heat transfer coefficient profiles are identified and the general behaviour of
the profiles is thoroughly explained.
The RCCS is modelled as a one-dimensional system. Correlations for the friction
factor, heat transfer coefficient, void fraction and two-phase frictional multiplier
are identified. The theoretical heat transfer coefficients are calculated using the
mathematical model and correlations identified in the literature review. Fluid
parameters are evaluated using experimentally determined temperatures and mass
flow rates. The resulting heat transfer coefficient profiles are compared to experimentally determined profiles, to confirm the hypothesis that existing
correlations do not accurately predict the inside-pipe heat transfer coefficients.
The experimentally determined coefficients are correlated to 99% confidence
intervals. These generated correlations, along with identified and established twophase
heat transfer coefficient correlations, are used in a mathematical model to
generate theoretical coefficient profiles. These are compared to the experimentally
determined coefficients to show prediction accuracy. / AFRIKAANSE OPSOMMING: Die haalbaarheid van ‘n natuurlike sirkulasie geslote lus vir die Reaktor Holte
Verkoeling Stelsel (RHVS) van die Korrelbed Modulêre Kern-Reaktor (KMKR)
is die onderwerp van talle navorsings projekte. Probleme geïdentifiseer in vorige
studies sluit in die hipotetiese onakkuraatheid van hitte-oordrag koëffisiënt
korrelasies beskikbaar in literatuur. Die doel van die navorsing aangebied is om
binne-pyp hitte-oordrag koëffisiënt korrelasies te ontwikkel spesifiek vir die
huidige ontwerp van die RHVS.
Ten einde dit te bereik, word ‘n literatuurstudie uitgevoer wat kern-reaktors
identifiseer wat gebruik maak van natuurlike sirkulasie lusse. Die literatuurstudie
verduidelik ook die algemene een-dimensionele twee-vloeistof behoud
vergelykings wat die basis vorm vir numeriese modellering van natuurlike
sirkulasie lusse. Die literatuurstudie bespreek laastens beskikbare hitte-oordrag
koëffisiënt korrelasies met die doel om te identifiseer vir welke massavloei tempo
waardes en onder watter omstandighede hierdie korrelasies as korrek beskou is.
Die ontleding sluit korrelasies in wat algemeen gebruik word in die modellering
van natuurlike sirkulasie in die kern industrie met die hoop om korrelasies vir
gebruik in die modellering van die voorgestelde RHVS te identifiseer.
Een van die doelwitte van die projek is om ‘n een-derde-hoogte-skaal model van
die RHVS te ontwerp en te bou. Tekortkominge van vorige eksperimentele
modelle is geidentifiseer en, so ver as moonlik, voor vergoed in die ontwerp van
die model. Koper pype word gebruik wat die onsekerhede van materiaal en
opperkvlak eindomme voorkom. Verkseie deursigtige polikarbonaat segmente is
ingesluit wat visuele identifikasie van twee-fase vloei regimes toelaat. ‘n Opening
plaat word gebruik om voorwaartse en terugwaartse vloeimeting toe te laat. Die
opening plaat, termokoppels en hitte uitruilers is gekalibreer in plek om
eksperimentele foute te verminder en om herhaalbaarheid te verseker.
Twaalf eksperimente word uitgevoer en data word elke tien sekondes aangeteken.
Die resultate wat hier aangebied word, is beperk tot geselekteerde enkel- en tweefase
vloei meganismes van werking. Fout ontleding en herhaalbaarheid van
eksperimentele metings, om die herhaalbaarheid van eksperimentele resultate te
toon. Hierdie is gebruik om wiskundig te bepaal wat die eksperimentele binne-pyp
hitte-oordrag koëffisiënte is vir beide die verdamper en kondenseerder afdelings.
Tendense in die hitte-oordrag koëffisiënt profiele word geïdentifiseer en die
algemene gedrag van die profiles is deeglik verduidelik.
Die RHVS is gemodelleer as 'n een-dimensionele stelsel. Korrelasies vir die
wrywing faktor, hitte-oordrag koëffisiënte, leegte-breuk en twee-fase wrywings
vermenigvuldiger word geïdentifiseer. Die teoretiese hitte-oordrag koëffisiënte
word bereken deur middle van die wiskundige model en korrelasies wat in
literatuur geidentifiseer is. Vloeistof parameters is geëvalueer met eksperimenteel
bepaalde temperature en massa-vloei tempos. Die gevolglike hitte-oordrag koëffisiënt profiles is vergelyk met eksperimentele profiele om die hipotese dat
die bestaande korrelasies nie die binne-pyp hitte-oordrag koëffisiënte akkuraat
voorspel nie, te bevestig.
Die eksperimenteel bepaalde koëffisiënte is gekorreleer en die gegenereerde
korrelasies, saam met geïdentifiseerde twee-fase hitte-oordrag koëffisiënt
korrelasies, word gebruik in 'n wiskundige model om teoretiese koëffisiënt
profiele te genereer. Dit word dan vergelyk met die eksperimenteel bepaalde hitteoordrag
koëffisiënte om die akkuraatheid van voorspelling te toon.
Tekortkominge in die teoretiese en eksperimentele model word geïdentifiseer en
aanbevelings gemaak om hulle aan te spreek in die toekoms.
|
Page generated in 0.0533 seconds