Spelling suggestions: "subject:"etheses -- copolymer science"" "subject:"etheses -- bipolymer science""
131 |
NMR studies of radical polymerization processesKlumperman, Bert 12 1900 (has links)
Thesis (DSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Examples
of
the
use
of
NMR
spectroscopy
in
the
study
of
radical
polymerization
processes
have
been
described.
The
studies
presented
have
made
a
significant
contribution
to
the
understanding
of
the
fundamental
mechanistic
processes
in
these
polymerization
systems.
It
is
pointed
out
that
NMR
in
conventional
radical
polymerization
is
of
limited
use
due
to
the
concurrent
occurrence
of
all
elementary
reactions
(initiation,
propagation
and
termination).
Conversely,
for
living
radical
polymerization,
NMR
has
great
value.
In
that
case,
the
elementary
reactions
are
somewhat
more
restricted
to
specific
times
of
the
polymerization
process.
This
allows
for
example
the
detailed
study
of
the
early
stages
of
chain
growth
in
Reversible
Addition-‐Fragmentation
Chain
Transfer
(RAFT)
mediated
polymerization.
Two
different
studies
are
described.
The
first
is
related
to
the
early
stages
of
RAFT-‐mediated
polymerization.
A
process
for
which
we
coined
the
name
initialization
was
studied
via
in
situ
1H
NMR
spectroscopy.
It
is
shown
that
in
many
cases,
there
is
a
selective
reaction
that
converts
the
original
RAFT
agent
into
its
single
monomer
adduct.
A
few
different
examples
and
their
mechanistic
interpretation
are
discussed.
It
is
also
shown
that
NMR
spectroscopy
can
be
a
valuable
tool
for
the
assessment
of
a
RAFT
agent
in
conjunction
with
a
specific
monomer
and
polymerization
conditions.
In
the
second
study,
15N
NMR,
31P
NMR
and
1H
NMR
are
used
for
two
different
types
of
experiments.
The
first
is
a
conventional
radical
copolymerization
in
which
the
growing
chains
are
trapped
by
a
15N
labeled
nitroxide
to
yield
a
stable
product.
In
the
second
experiment,
a
similar
copolymerization
is
conducted
under
nitroxide-‐mediated
conditions.
The
nitroxide
of
choice
contains
phosphorous,
which
enables
the
quantification
of
the
terminal
monomer
in
the
dormant
chains.
Each
of
the
experiments
individually
provides
interesting
information
on
conventional
radical
copolymerization
and
nitroxide-‐mediated
copolymerization,
respectively.
Combination
of
the
experimental
data
reveals
an
interesting
discrepancy
in
the
ratio
of
terminal
monomer
units
in
active
chains
and
dormant
chains.
Although
not
unexpected,
this
result
is
interesting
and
useful
from
a
mechanistic
as
well
as
a
synthetic
point
of
view.
In
terms
of
future
perspectives,
it
is
expected
that
the
advanced
analytical
techniques
as
described
here
will
remain
crucial
in
polymer
science.
Present
developments
in
radical
polymerization,
such
as
investigations
into
monomer
sequence
control,
rely
on
accurate
knowledge
of
kinetic
and
mechanistic
details
of
elementary
reactions.
It
is
expected
that
such
detailed
studies
will
be
a
main
challenge
for
the
next
decade
of
polymer
research. / AFRIKAANSE OPSOMMING: Voorbeelde
van
die
gebruik
van
KMR-‐spektroskopie
in
die
studie
van
radikaalpolimerisasies
word
beskryf.
Hierdie
studies
het
ʼn
beduidende
bydrae
gelewer
tot
die
verstaan
van
die
fundamentele
meganistiese
prosesse
in
hierdie
polimerisasiesisteme.
Dit
het
daarop
gewys
dat
KMR
beperkte
gebruike
het
in
konvensionele
radikaalpolimerisasies
as
gevolg
van
die
gelyktydige
voorkoms
van
alle
basiese
reaksies
(afsetting,
voortsetting
en
beëindiging).
Aan
die
anderkant
het
KMR
groot
waarde
vir
lewende
radikaalpolimerisasie.
In
hierdie
geval
is
die
elementêre
reaksies
ietwat
meer
beperk
tot
spesifieke
tye
van
die
polimerisasieproses.
Gedetailleerde
studies
kan
byvoorbeeld
van
die
vroeë
stadiums
van
die
kettinggroei
in
Omkeerbare
Addisie-‐Fragmentasie-‐
KettingOordrag
(OAFO)-‐bemiddelde
polimerisasie
gedoen
word.
Twee
verskillende
studies
is
beskryf.
Die
eerste
het
betrekking
op
die
vroeë
stadiums
van
die
OAFO-‐bemiddelde
polimerisasie.
'n
Proses
wat
“inisialisering”
genoem
is,
is
bestudeer
deur
middel
van
in
situ
1H
KMR-‐spektroskopie.
Dit
is
bewys
dat
daar
in
baie
gevalle
'n
selektiewe
reaksie
is
wat
die
oorspronklike
OAFO-‐agent
in
sy
enkelmonomeeradduk
verander
voor
polimerisasie.
'n
Paar
ander
voorbeelde
en
hul
meganistiese
interpretasie
is
bespreek.
Dit
is
ook
bewys
dat
KMR-‐spektroskopie
'n
waardevolle
hulpmiddel
kan
wees
vir
die
assessering
van
'n
OAFO-‐agent
in
samewerking
met
'n
spesifieke
monomeer
en
polimerisasie
toestande.
In
die
tweede
studie
is
15N
KMR,
31P
KMR
en
1H
KMR
gebruik
vir
twee
verskillende
tipes
van
die
eksperiment.
Die
eerste
is
'n
konvensionele
radikaalkopolimerisasie
waarin
die
groeiende
kettings
vasgevang
word
deur
'n
15N-‐gemerkte
nitroksied
om
'n
stabiele
produk
te
lewer.
In
die
tweede
eksperiment
is
'n
soortgelyke
kopolimerisasie
gedoen
onder
nitroksied-‐
bemiddelde
toestande.
Die
gekose
nitroksied
bevat
fosfor
wat
die
kwantifisering
van
die
terminale
monomeer
in
die
dormante
kettings
moontlik
maak.
Elkeen
van
die
individuele
eksperimente
lewer
interessante
inligting
oor
konvensionele
radikale
kopolimerisasie
en
nitroksied-‐bemiddelde
kopolimerisasie,
onderskeidelik.
ʼn
Kombinasie
van
die
eksperimentele
data
toon
'n
interessante
verskil
aan
in
die
verhouding
van
die
terminale
monomeereenhede
in
die
aktiewe
en
sluimerende
kettings.
Alhoewel
dit
nie
onverwags
is
nie,
is
die
resultate
interessant
en
van
waarde
vanuit
'n
meganistiese-‐
sowel
as
'n
sintetiese
oogpunt.
In
terme
van
toekomstige
perspektiewe
word
daar
verwag
dat
gevorderde
analitiese
tegnieke
soos
hier
beskryf,
belangrik
sal
bly
in
polimeerwetenskap.
Huidige
ontwikkelinge
in
radikaalpolimerisasie,
soos
ondersoeke
na
die
beheer
van
monomeervolgorde,
maak
staat
op
akkurate
kennis
van
kinetiese
en
meganistiese
besonderhede
van
die
basiese
reaksies.
Daar
word
verwag
dat
sulke
gedetailleerde
studies
ʼn
uitdaging
sal
bied
vir
die
volgende
dekade
van
polimeernavorsing.
|
132 |
Polymer-clay nanocomposites prepared by RAFT-supported graftingChirowodza, Helen 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: In materials chemistry, surface-initiated reversible deactivation radical polymerisation (SI-RDRP) has emerged as one of the most versatile routes to synthesising inorganic/organic hybrid materials consisting of well-defined polymers. The resultant materials often exhibit a remarkable improvement in bulk material properties even after the addition of very small amounts of inorganic modifiers like clay.
A novel cationic reversible addition–fragmentation chain transfer (RAFT) agent with the dual purpose of modifying the surface of Laponite clay and controlling the polymerisation of monomer therefrom, was designed and synthesised. Its efficiency to control the polymerisation of styrene was evaluated and confirmed through investigating the molar mass evolution and chain-end functionality.
The surface of Laponite clay was modified with the cationic chain transfer agent (CTA) via ion exchange and polymerisation performed in the presence of a free non-functionalised CTA. The addition of the non-functionalised CTA gave an evenly distributed CTA concentration and allowed the simultaneous growth of surface-attached and free polystyrene (PS). Further analysis of the free and grafted PS using analytical techniques developed and published during the course of this study, indicated that the free and grafted PS chains were undergoing different polymerisation mechanisms. For the second monomer system investigated n-butyl acrylate, it was apparent that the molar mass targeted and the monomer conversions attained had a significant influence on the simultaneous growth of the free and grafted polymer chains. Additional analysis of the grafted polymer chains indicated that secondary reactions dominated in the polymerisation of the surface-attached polymer chains.
A new approach to separating the inorganic/organic hybrid materials into their various components using asymmetrical flow field-flow fractionation (AF4) was described. The results obtained not only gave an indication of the success of the in situ polymerisation reaction, but also provided information on the morphology of the material.
Thermogravimetric analysis (TGA) was carried out on the polymer-clay nanocomposite samples. The results showed that by adding as little as 3 wt-% of clay to the polymer matrix, there was a remarkable improvement in the thermal stability. / AFRIKAANSE OPSOMMING: Oppervlakgeïnisieerde omkeerbare deaktiveringsradikaalpolimerisasie (SI-RDRP) is een van die veelsydigste roetes om anorganiese/organiese hibriedmateriale (wat bestaan uit goed-gedefinieerde polimere) te sintetiseer. Die produk toon dikwels ʼn merkwaardige verbetering in die makroskopiese eienskappe – selfs na die toevoeging van klein hoeveelhede anorganiese modifiseerders soos klei.
ʼn Nuwe kationiese omkeerbare addisie-fragmentasie kettingoordrag (RAFT) middel met die tweeledige doel om die modifisering van die oppervlak van Laponite klei en die beheer van die polimerisasie van die monomeer daarvan, is ontwerp en gesintetiseer. Die klei se doeltreffendheid om die polimerisasie van stireen te beheer is geëvalueer en bevestig deur die molêre massa en die funksionele groepe aan die einde van die ketting te ondersoek.
Die oppervlak van Laponite klei is gemodifiseer met die kationiese kettingoordragmiddel (CTA) deur middel van ioonuitruiling en polimerisasie wat uitgevoer word in die teenwoordigheid van ʼn vrye nie-gefunksionaliseerde CTA. Die toevoeging van die nie-gefunksionaliseerde CTA het ʼn eweredig-verspreide konsentrasie CTA teweeggebring en die gelyktydige groei van oppervlak-gebonde en vry polistireen (PS) toegelaat. Verdere ontleding van die vrye- en geënte PS met behulp van analitiese tegnieke wat ontwikkel en gepubliseer is gedurende die verloop van hierdie studie, het aangedui dat die vry- en geënte PS-kettings verskillende polimerisasiemeganismes ondergaan. n-Butielakrilaat is in die tweede monomeer-stelsel ondersoek en dit was duidelik dat die molêre massa wat geteiken is en die geënte polimeerkettings.
ʼn Nuwe benadering tot die skeiding van die anorganiese/organiese hibriedmateriale in hulle onderskeie komponente met behulp van asimmetriese vloeiveld-vloei fraksionering (AF4) is beskryf. Die resultate wat verkry is, het nie net 'n aanduiding gegee van die sukses van die in-situ polimerisasiereaksie nie, maar het ook inligting verskaf oor die morfologie van die materiaal. Termogravimetriese analise (TGA) is uitgevoer op die polimeer-klei nanosaamgestelde monsters. Die resultate het getoon dat daar 'n merkwaardige verbetering in die termiese stabiliteit was na die toevoeging van so min as 3 wt% klei by die polimeermatriks.
|
133 |
Novel multidimensional fractionation techniques for the compositional analysis of impact polypropylene copolymersCheruthazhekatt, Sadiqali 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Impact Polypropylene Copolymers (IPCs) are extremely complex materials, consisting of a mixture of
polypropylene homopolymer and copolymers having different comonomer (ethylene) contents and
chemical composition distributions. IPC can only be effectively analysed by multidimensional
analytical approaches. For this, initially, the individual components have to be separated according to
any of their molecular characteristics, either by chemical composition distribution (CCD) or molar
mass distribution (MMD), followed by further analysis of these separated fractions with conventional
analytical techniques. The combination of preparative temperature rising elution fractionation (TREF)
with several other analytical techniques have been reported for the thorough characterization of this
material. However, even the combinations of these methods were of limited value due to the complex
nature of this polymer. Therefore, novel analytical approaches are needed for a more detailed
compositional analysis of IPCs.
This work describes a number of multidimensional analytical techniques that are based on the
combination of fractionation and hyphenated techniques. Firstly, preparative TREF was combined
with high temperature size exclusion chromatography-FTIR (HT SEC-FTIR), HT SEC-HPer DSC
(High Performance Differential Scanning Calorimetry) and high temperature two-dimensional liquid
chromatography (HT 2D-LC) for the comprehensive analysis of a typical impact polypropylene
copolymer and one of its midelution temperature TREF fractions. HT SEC-FTIR analysis provided
information regarding the chemical composition and crystallinity as a function of molar mass. Thermal
analysis of selected SEC fractions using a novel DSC method - High Speed or High Performance
Differential Scanning Calorimetry (HPer DSC) - that allows measuring of minute amounts of material
down to micrograms, yielded the melting and crystallization behaviour of these fractions which is
related to the chemical heterogeneity of this complex copolymer. High temperature 2D-LC analysis
provided the complete separation of this TREF fraction according to the chemical composition of each
component along with its molar mass distribution. In a second step, the compositional characterization by advanced thermal analysis (HPer DSC, Flash DSC 1, and solution DSC) of the
TREF-SEC fractions was extended to all semi-crystalline and higher temperature TREF fractions. By
applying HPer DSC at scan rates of 5−200°C/min and Flash DSC 1 at scan rates of 10−1000°C/s,
the metastability of one of the fractions was studied in detail. DSC measurements of TREF-SEC
cross-fractions at high scan rates in p-xylene successfully connected reversely to the slow scan rate
in TREF elution, if corrected for recrystallization. Finally, the exact chemical structure of all HT HPLC
separated components was determined by coupling of HT HPLC with FTIR spectroscopy via an LCTransform
interface. This novel approach revealed the capability of this hyphenated technique to
determine the exact chemical composition of the individual components in the complex TREF
fractions of IPCs. The HT HPLC–FTIR results confirmed the separation mechanism in HPLC using a
solvent gradient of 1-decanol/TCB and a graphitic stationary phase at 160°C. FTIR analysis provided
information on the ethylene and propylene contents of the fractions as well as on the ethylene and
propylene crystallinities. / AFRIKAANSE OPSOMMING: Impak Polipropileen Kopolimere (IPKe) is uiters komplekse materiale, bestaande uit 'n mengsel van
polipropileen homopolimeer en kopolimere met verskillende komonomeer (etileen) inhoud en
chemiese samestelling verspreiding. IPKe kan slegs doeltreffend ontleed word deur multidimensionele
analitiese benaderings te volg. Hiervoor moet die individuele komponente aanvanklik
eers geskei word volgens enige van hul molekulêre eienskappe, hetsy deur die chemiese
samestelling verspreiding (CSV) of molêre massa verspreiding (MMV), gevolg deur 'n verdere
ontleding van hierdie geskeide fraksies met konvensionele analitiese tegnieke. Die kombinasie van
voorbereidings temperatuur-verhogings eluasie fraksionering (TVEF) met verskeie ander analitiese
tegnieke is gerapporteer vir die deeglike karakterisering van hierdie materiaal. Maar selfs die
kombinasies van hierdie metodes was van beperkte waarde as gevolg van die komplekse aard van
hierdie polimeer. Daarom word nuwe analitiese benaderings benodig vir 'n meer gedetailleerde
komposisionele ontleding van IPKe.
Hierdie studie beskryf 'n aantal multidimensionele analitiese tegnieke wat gebaseer is op die
kombinasie van fraksionering en gekoppelde tegnieke. Eerstens is voorbereidings TVEF gekombineer
met hoë temperatuur grootte-uitsluitingschromatografie-FTIR (HT GUC-FTIR), HT GUC-HPer DSK en
hoë temperatuur twee-dimensionele vloeistof chromatografie (HT 2D-VC) vir die omvattende
ontleding van 'n tipiese impak polipropileen kopolimeer en een van sy mid-eluasie temperatuur TVEF
fraksies. HT GUC-FTIR analiese het inligting verskaf met betrekking tot die chemiese samestelling en
kristalliniteit as 'n funksie van molêre massa. Termiese analiese van geselekteerde GUC fraksies deur
gebruik te maak van 'n nuwe-DSK metode - Hoë Spoed of Hoë Prestasie Differensïele skandeer
kalorimetrie (HPer DSK) - wat die meting van klein hoeveelhede materiaal tot by mikrogram
hoeveelhede toelaat, het die smelt en kristallisasie gedrag van hierdie fraksies bepaal wat verwant is
aan die chemiese heterogeniteit van hierdie komplekse kopolimeer. Hoë temperatuur 2D-LC analiese
het die volledige skeiding van hierdie TVEF fraksie volgens die chemiese samestelling van elke
komponent saam met die molêre massa verspreiding moontlik gemaak. In 'n tweede stap, is die komposisionele karakterisering deur gevorderde termiese analiese (HPer DSK, Flash DSK 1 en
oplossing DSK) van die TVEF-GUC fraksies uitgebrei na alle semi-kristallyne en hoër temperatuur
TVEF fraksies. Deur die gebruik van HPer DSK, teen ’n skandeerspoed van 5-200°C / min, en Flash
DSK 1, teen ’n skandeerspoed van 10-1000°C / s, is die meta-stabiliteit van een van die fraksies in
detail bestudeer. DSK metings van TVEF-GUC kruis-fraksies by 'n hoë skandeeerspoed in p-xyleen
het suksesvol omgekeerd verbind aan die stadige skandeerspoed in TVEF eluasie, wanneer
gekorrigeer vir dekristallisatie. Ten slotte is die presiese chemiese struktuur van al die HT HPVC
geskeide komponente bepaal deur die koppeling van HT HPVC met FTIR spektroskopie deur middel
van 'n LC-transform-koppelvlak. Hierdie nuwe benadering het die vermoë van die gekoppelde tegniek
om die presiese chemiese samestelling van die individuele komponente in die komplekse TVEF
fraksies of IPKe te bepaal aan die lig gebring. Die HT HPVC-FTIR resultate het die
skeidingsmeganisme in HPVC bevestig deur die gebruik van ’n oplosmiddelgradiënt van 1-dekanol/TCB en 'n graphitiese stasionêre fase by 160°C. FTIR analiese verskaf inligting in verband
met die etileen en propileen inhoud van die fraksies sowel as die etileen en propileen krystalliniteit.
|
134 |
The development of a novel technique for AFM thermal analysis of individual phases in polymer mixtures after separation and identification via LC-FTIRDe Goede, E. (Elana) 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: In the ongomg search for better and faster ways to characterize complex polymer
systems, it is often necessary to couple different analytical techniques in order to obtain
information on more than one distributed property. In this study, the coupling of
chromatography and spectroscopy to atomic force microscopy (AFM) was attempted for
the first time, and thus the term "LC-FTIR-AFM" was coined. This new hyphenated
technique combines the separation power of liquid chromatography (LC) and the ability
of infrared spectroscopy (IR) to identify almost any organic compound, with the AFM's
ability to be used for thermal analysis of individual phases in polymer mixtures.
The first two steps of this new technique comprise (i) the separation of compounds in a
mixture via gradient polymer elution chromatography (GPEC) and (ii) the identification
of each compound by means of LC-FTIR analysis. In the final step, LC-FTIR analysis is
coupled to AFM through the use of the LC-FTIR interface.
A number of polymer mixtures were analysed by means of the novel technique that was
developed, in order to establish its validity and value as a characterization technique of
the future. The influence of fllm thickness and molar mass on the thermal parameters of
individual components in mixtures, measured by this technique, were also investigated.
This technique adds a new dimension to conventional thermal analysis methods, since it
allows the thermal transitions of individual polymer phases in multiphase polymers to be
resolved directly after separation and identification. / AFRIKAANSE OPSOMMING: In die voortdurende soektog na beter en vinniger maniere om komplekse polimeersisteme
te karakteriseer, is dit soms nodig om verskillende analitiese tegnieke met mekaar te
koppel ten einde inligting aangaande twee of meer verspreide eienskappe te bekom.
Gedurende hierdie studie is daar gepoog om chromatografie en spektroskopie met
atoominteraksie-mikroskopie (atomic force microscopy, AFM) te koppel. Gevolglik het
die term "LC-FTIR-AFM" ontstaan. Hierdie nuwe koppelingstegniek kombineer die
kragtige skeidingspotensiaal van vloeistofchromatografie en die vermoë van
infrarooispektroskopie om byna enige organiese verbinding positief te identifiseer, met
die atoominteraksie-mikroskoop se potensiaal om as 'n termiese analise metode vir
individuele fases in polimeermengsels te dien.
Die eerste twee stappe van die tegniek behels (i) die skeiding van verbindings in 'n
mengsel deur middel van gradient-hoë-druk-vloeistofchromatografie en (ii) die
identifisering van afsonderlike verbindings deur vloeistofchromatografie gekoppel aan
infrarooispektroskopie. Gedurende die finale stap word vloeistofchromatografie en
infrarooispektroskopie aan die atoominteraksie-mikroskoop gekoppel deur gebruik te
maak van die LC-FTIR koppelingsapparaat.
'n Aantal polimeermengsels is geanaliseer deur die nuwe tegniek hierbo beskryf, ten
einde die geldigheid en waarde daarvan as 'n analitiese metode vir die toekoms vas te
stel. Die invloed van film diktes en molekulêre massa op die termiese oorgange van
individuele komponente in mengsels, soos gemeet deur hierdie metode, is ook ondersoek.
Hierdie tegniek voeg 'n nuwe dimensie tot konvensionele termiese analise metodes
deurdat dit die bepaling van termiese oorgange van individuele polimeerfases III
multifase polimere, direk na afloop van skeiding en identifikasie moontlik maak.
|
Page generated in 0.0495 seconds