• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FORMATION OF SILICON NANOCRYSTALS IN SiO2 BY SILICON IMPLANTATION AND SUBSEQUENT ANNEALING

IBNA, SHAIKH MD ASKER 04 1900 (has links)
<p>Since the first description of Si nanocrystals, research in this field has gone through raid progress and potential applications of Si nanocrystals have been established. There are several methods applicable to the fabrication of Si nanocrystals with one of the most used being ion implantation followed by thermal annealing. Two types of thermal annealing are available for use: furnace annealing (FA) for several hours, normally in an N<sub>2</sub> atmosphere; and rapid thermal annealing (RTA) for a short time (less than a few minutes), again in an inert atmosphere such as N<sub>2</sub>. The formation of the nanocrystals then proceeds with decomposition, segregation, diffusion, nucleation, aggregation, growth and crystallization. This formation requires temperatures in excess of 1000<sup>o</sup> C such that noticeable photoluminescence may be observed. This thesis explores the fabrication of Si nanocrystals using the McMaster ion implanter and subsequent RTA. The implantation conditions required to form luminescent nanocrystals are determined. For example, for an implantation energy of 10 KeV a minimum dose of 1.5 10<sup>16</sup> ions cm<sup>-2</sup> is required. The relationship between luminescent intensity and post-implantation annealing is also explored. An optimum annealing temperature of 1100<sup>o</sup>C is found. For the first time to the author’s knowledge, a study of the effects of thin film thickness on luminescent intensity is conducted. The major conclusions of this thesis are i) a specific thickness of oxide layer has the maximum PL for a fixed implantation energy and implantation dose, ii) PL intensity is inversely proportional with measuring temperature., iii) the type of oxidation process has a large effect on PL intensity.</p> / Master of Applied Science (MASc)
2

Modeling Different Failure Mechanisms in Metals

Zhang, Liang 2011 December 1900 (has links)
Material failure plays an important role in human life. By investigating the failure mechanisms, people can more precisely predict the failure conditions to develop new products, to enhance product performances, and most importantly, to save lives. This work consists of three parts corresponding to three different failure mechanisms in metals, i.e., the localized necking in sheet metals, the bifurcation in bulk and sheet metals, and the ductile fracture induced by the void nucleation, growth, and coalescence. The objective of the first part is to model the localized necking in anisotropic sheet metals to demonstrate that localized geometric softening at a certain stage of deformation rather than the initial defects is the main cause of localized necking. The sheet is assumed to have no initial geometric defects. The deformation process is divided into two stages. The critical strains for a neck to form are obtained from a Considère-type criterion. The defect ratio at the neck formation is obtained using an energy-based approach. The neck evolution is considered. A novel failure criterion is proposed. Two types of necks are fond to be most competitive to cause material failure during continued deformation. The forming limit curves are hereby found to exhibit different characteristics in different region. The predicted forming limit curve for 2036-T4 aluminum is found to fit with the experimental results well. The sheet thickness, the strain hardening behavior, and plastic anisotropy are found to affect the sheet metal formability. More realistic yield criterions and strain hardening behaviors can be implemented into the proposed model. This part provides an alternative approach to modeling the localized necking in anisotropic sheet metals. The objective of the second part is to model the bifurcation in anisotropic bulk and sheet metals to couple plastic anisotropy and the strain hardening/softening behavior and also to identify different bifurcation modes in sheet metals. The material is assumed to exhibit a non-linear strain hardening/softening behavior and to obey the Hill-type Drucker-Prager yield criterion along with a non associated flow rule. The constitutive relations and the conditions for bifurcation in bulk and sheet metals are derived. The internal friction coefficient, plastic anisotropy, the terms introduced by the co-rotational stress rates, and the terms introduced by the stress resultant equilibrium are found to affect the onset of bifurcation. Two bifurcation modes are found to exist in sheet metals. More realistic material properties can be implemented into the proposed model. This part provides an applicable approach to modeling the bifurcation in anisotropic bulk and sheet metals. The objective of the third part is to derive the constitutive relations for porous metals using generalized Green’s functions to better understand the micromechanism of the ductile fracture in metals. The porous metals are assumed to consist of an isotropic, rigid-perfectly plastic matrix and numerous periodically distributed voids and to be subject to non-equal biaxial or triaxial extension. Two types of hollow cuboid RVEs are employed represent the typical properties of porous metals with cylindrical and spherical voids. The microscopic velocity fields are obtained using generalized Green’s functions. The constitutive relations are derived using the kinematic approach of the Hill-Mandel homogenization theory and the limit analysis theory. The macroscopic mean stress, the porosity, the unperturbed velocity field, and the void distribution anisotropy are found to affect the macroscopic effective stress and the microscopic effective rate of deformation field. The proposed model is found to provide a rigorous upper bound. More complicated matrix properties (e.g., plastic anisotropy) and void shapes can be implemented into the proposed model. This part provides an alternative approach to deriving the constitutive relations for porous metals.
3

Non-linear individual and interaction phenomena associated with fatigue crack growth.

Codrington, John David January 2008 (has links)
The fatigue of materials and structures is a subject that has been under investigation for almost 160 years; yet reliable fatigue life predictions are still more of an empirical art than a science. The traditional safe-life approach to fatigue design is based upon the total time to failure of a virtually defect free component. This approach is heavily reliant on the use of safety factors and empirical equations, and therefore much scatter in the fatigue life predictions is normally observed. Furthermore, the safe-life approach is unsuitable for many important applications such as aircraft, pressure vessels, welded structures, and microelectronic devices. In these applications the existence of initial defects is practically unavoidable and the time of propagation from an initial defect to final failure is comparable with the total life of the component. In the early 1970’s, the aircraft industry pioneered a new approach for the analysis of fatigue crack growth, known as damage tolerant design. This approach utilises fracture mechanics principles to consider the propagation of fatigue cracks from an initial crack length until final fracture, or a critical crack length, is reached. Since the first implementation of damage tolerant design, much research and development has been undertaken. In particular, theoretical and experimental fracture mechanics techniques have been utilised for the investigation of a wide variety of fatigue crack growth phenomena. One such example is the retardation and acceleration in crack growth rate caused by spike overloads or underloads. It is generally accepted, however, that the current level of understanding of fatigue crack growth phenomena and the adequacy of fatigue life prediction techniques are still far from satisfactory. This thesis theoretically investigates various non-linear individual and interaction phenomena associated with fatigue crack growth. Specifically, the effect of plate thickness on crack growth under constant amplitude loading, crack growth retardation due to an overload cycle, and small crack growth from sharp notches are considered. A new semianalytical method is developed for the investigations, which utilises the distributed dislocation technique and the well-known concept of plasticity-induced crack closure. The effects of plate thickness are included through the use of first-order plate theory and a fundamental solution for an edge dislocation in plate of arbitrary thickness. Numerical results are obtained via the application of Gauss-Chebyshev quadrature and an iterative procedure. The developed methods are verified against previously published theoretical and experimental data. The elastic out-of-plane stress and displacement fields are first investigated using the developed method and are found to be in very good agreement with past experimental results and finite element simulations. Crack tip plasticity is then introduced by way of a strip-yield model. The effects of thickness on the crack tip plasticity zone and plasticity-induced crack closure are studied for both small and large-scale yielding conditions. It is shown that, in general, an increase in plate thickness will lead to a reduction in the extent of the plasticity and associated crack closure, and therefore an increase in the crack growth rates. This observation is in agreement with many findings of past experimental and theoretical studies. An incremental crack growth scheme is implemented into the developed method to allow for the investigation of variable amplitude loading and small fatigue crack growth. The case of a single tensile overload is first investigated for a range of overload ratios and plate thicknesses. This situation is of practical importance as an overload cycle can significantly increase the service life of a cracked component by temporarily retarding the crack growth. Next to be studied is growth of physically small cracks from sharp notches. Fatigue cracks typically initiate from stress concentrations, such as notches, and can grow at rates higher than as predicted for a long established crack. This can lead to non-conservative estimates for the total fatigue life of a structural component. For both the overload and small crack cases, the present theoretical predictions correlate well with past experimental results for a range of materials. Furthermore, trends observed in the experiments match those of the predictions and can be readily explained through use of crack closure arguments. This thesis is presented in the form of a collection of published or submitted journal articles that are the result of research by the author. These nine articles have been chosen to best demonstrate the development and application of the new theoretical techniques. Additional background information and an introduction into the chosen field of research are provided in order to establish the context and significance of this work. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349588 / Thesis (Ph.D.) - University of Adelaide, School of Mechanical Engineering, 2008
4

Modeling Boundary Effect Problems of Heterogeneous Structures by Extending Mechanics of Structure Genome

Bo Peng (5930135) 10 June 2019 (has links)
First, the theory of MSG is extended to aperiodic heterogeneous solid structures. Integral constraints are introduced to decompose the displacements and strains of the heterogeneous material into a fluctuating part and a macroscopic part, of which the macroscopic part represents the responses of the homogenized material. One advantage of this theory is that boundary conditions are not required. Consequently, it is capable of handling micro-structures of arbitrary shapes. In addition, periodic constraints can be incorporated into this theory as needed to model periodic or partially periodic materials such as textile composites. In this study, the newly developed method is employed to investigate the finite thickness effect of textile composites.<div><br></div><div>Second, MSG is enabled to deal with Timoshenko beam-like structures with spanwise heterogeneity, which provide higher accuracy than the previous available Euler–Bernoulli beam model. Its reduced form, the MSG beam cross sectional analysis, is found to be able to analyze generalized free-edge problems with arbitrary layups and subjected to general loads. In this method, the only assumption applied is that the laminate is long enough so that the Saint-Venant principle can be adopted. There is no limitation on the cross section of the laminate since no ad hoc assumption is involved with the microstructure geometry. This method solve the free-edge problem from a multiscale simulation point of view.<br></div><div><br></div>
5

Etude expérimentale et modélisation de la formation et du développement du givre sur une plaque refroidie / Experimental study and modelling of frost formation and development on a cold plate

Léoni, Aurélia 17 February 2017 (has links)
Dans un objectif de réduction des consommations énergétiques et des impacts environnementaux, la pompe à chaleur (PAC) s'est imposée comme une alternative aux systèmes à combustion fossile pour le chauffage et la production d'eau chaude sanitaire dans les secteurs résidentiel et tertiaire. Les industriels ne cessent de chercher à accroitre la performance énergétique des pompes à chaleur. Toutefois, un phénomène encore mal maitrisé limite les progrès : le givrage. En effet, dans certaines conditions de température et d'humidité de l'air extérieur, du givre peut se former sur la surface de l'évaporateur de la PAC, provoquant ainsi une chute de performance. En France, près de 98 % des PAC du marché utilisent l'air extérieur comme source de chaleur et sont donc exposées à ce phénomène. Malgré des logiques de dégivrage de plus en plus sophistiquées mises en œuvre par les industriels, le fonctionnement cyclique givrage/dégivrage réduit fortement les performances des PAC. Pour optimiser les méthodes de dégivrage, il est nécessaire de comprendre en amont, les mécanismes d'apparition et de croissance du givre. Ce travail de thèse propose ainsi d'étudier la formation et le développement du givre sur une plaque plane refroidie. Une étude approfondie de la bibliographie a permis d'établir des bases de données regroupant des points expérimentaux de l'épaisseur et de la masse volumique du givre. Des modèles et corrélations de formation du givre disponibles dans la littérature ont été reproduits et appliqués à ces bases de données afin d'évaluer la capacité de prédiction de chacun de ces modèles. Les plus performants ont ainsi pu être identifiés. En parallèle, un banc d'essais a été conçu pour observer la formation et la croissance du givre sur une plaque plane. L'étude de sensibilité menée sur la température de l'air, la température de la plaque froide, la vitesse de l'air et l'humidité relative a permis d'évaluer l'impact de ces paramètres sur la formation du givre, et plus particulièrement sur trois de ses propriétés : l'épaisseur, la masse volumique et la conductivité thermique. L'humidité relative et la température de la plaque froide ont été identifiées comme les paramètres prépondérants. Un des résultats importants de ce travail a été de mettre en évidence le rôle de la structure du givre sur ses propriétés (masse volumique et conductivité). Les points expérimentaux obtenus sur le banc d'essais ont été comparés aux résultats issus des modèles de la littérature. Les méthodes de prédiction identifiées comme satisfaisantes dans la partie bibliographique de cette thèse ont fourni des résultats similaires d'un point de vue statistique. Des perspectives de travail ont également été proposées. / In the energy consumption and environmental impact reduction goal, heat pumps emerged as an alternative to fossil fuel systems for space heating and hot water production in residential and tertiary sectors. Manufacturers still try to improve energy performance of heat pumps. However, a non-controlled phenomenon is limiting progress: frosting. Indeed, in some outdoor air temperature and relative humidity conditions, frost can form on the heat pump evaporator surface, leading to performance reduction. On the French market, almost 98 % of the heat pumps are using outdoor air as heat source and are thus affected. Despite more and more sophisticated defrosting strategies, the frosting/defrosting cyclic operation strongly reduces heat pump performance. For optimizing defrosting strategies, there is a need understanding frost appearance and growth mechanisms. This PhD work thus proposes to study frost formation and development on a cold plane plate. An in-depth bibliography study helped establishing databases gathering experimental points on frost thickness and frost density. Models and correlations of frost formation available in the literature have been reproduced and applied to the databases in order to evaluate their prediction capacity. The most performing models have been identified. Meanwhile, an experimental bench allowing visualization of frost formation and development on a cold plane plate has been set up. The sensitivity analysis on air temperature, cold plate temperature, air velocity and relative humidity allowed an evaluation of these parameters impact on frost formation, and more particularly on three of its properties thickness, density and thermal conductivity. Relative humidity and cold plate temperature have been identified as the leading parameters. One of the main results of this work was to highlight the frost crystal structure role on properties (i.e. density and thermal conductivity). Experimental data points obtained with the test bench have been compared to the results provided by literature models. Predictive methods identified as satisfying in the bibliography study gave similar results (from a statistical point of view). Perspectives for future work have also been proposed.

Page generated in 0.077 seconds