Spelling suggestions: "subject:"thoracic aortic aneurysm"" "subject:"thoracic aortic neurysm""
1 |
Anatomy determines etiology in thoracic aortic aneurysmVapnik, Joshua 08 April 2016 (has links)
BACKGROUND: It is well established that thoracic aortic aneurysms (TAA) and abdominal aortic aneurysms (AAA) have different risk factors, clinical features, and genetic influences. Differences between and amongst subtypes of TAAs have received less attention. Despite observations of divergent clinical outcomes between ascending thoracic aortic aneurysms (ATAAs) and descending thoracic aortic aneurysms (DTAAs), etiologic factors determining the anatomic distribution of these aneurysms are not well understood.
METHODS: From 3,247 patients registered in an institutional Thoracic Aortic Center Database from July 1992 through August 2013, we identified 921 patients with full aortic dimensional imaging by CT or MRI scan with TAA > 3.5 cm and without evidence of aortic dissection (AoD). Patients were analyzed in three groups: isolated ATAA (n=677), isolated DTAA (n=97), and combined ATAA and DTAA (n=146).
RESULTS: Patients with a DTAA, alone or with coexistent ATAA, had significantly more hypertension (80.6% vs. 61.8%, p<.001) and a higher burden of atherosclerotic disease ( 86.7% vs. 7.5%, p<.001) ) and were more likely to be female (59.3% vs. 29.5%, P<.001). Conversely, patients with isolated ATAA were significantly younger (average age 59.5 vs. 71, p<.001), and contained almost every case of overt genetically-triggered TAA. Patients with isolated DTAA were demographically indistinguishable from patients with combined ATAA and DTAA. In follow up, patients with isolated DTAA, or with ATAA and DTAA, experienced significantly more aortic events (aortic dissection/rupture) and had higher mortality than patients with isolated ATAA.
CONCLUSIONS: Based on patient characteristics and outcomes, subtypes of TAA emerge. DTAA with or without associated ATAA or AAA appears to be a disease more highly associated with atherosclerosis, hypertension, and advanced age. In contrast, isolated ATAA appears to be a clinically distinct entity with a higher burden of genetically triggered disease. These data have important implications for familial screening recommendations for TAA.
|
2 |
Uptake of Screening and Recurrence of Bicuspid Aortic Valve and Thoracic Aortic Aneurysm among At-risk SiblingsMiller, Daniel E. 29 September 2021 (has links)
No description available.
|
3 |
The Use of Genetic Analyses and Functional Assays for the Interpretation of Rare Variants in Pediatric Heart DiseaseSchubert, Jeffrey A., B.S. 29 October 2018 (has links)
No description available.
|
4 |
<i>Chlamydophila pneumoniae in Cardiovascular Diseases</i> : <i>Clinical and Experimental Studies</i>Edvinsson, Marie January 2008 (has links)
<p><i>Chlamydophila pneumoniae</i> (<i>C. pneumoniae</i>) has been suggested as a stimulator of chronic inflammation in atherosclerosis. <i>C. pneumoniae</i> DNA was demonstrated in aortic biopsies in 50% of patients with stable angina pectoris or acute coronary syndrome undergoing coronary artery bypass grafting. <i>C. pneumoniae</i> mRNA, a marker of replicating bacteria, was demonstrated in 18% of the aortic biopsies. </p><p>Inflammation may have a role in the pathogenesis of thoracic aortic aneurysm, aortic dissection and aortic valve stenosis. <i>C. pneumoniae </i>DNA was demonstrated in aortic biopsies in 26% of thoracic aortic aneurysm patients and in 11% of aortic dissection patients undergoing thoracic surgery and in 22% of stenotic aortic heart valves from patients undergoing aortic valve replacement. No bacterial mRNA was demonstrated in these aortic biopsies, nor in the valves, suggesting that the infection has passed into a persistent state. <i>C. pneumoniae</i> DNA was demonstrated in peripheral blood mononuclear cells in only 5% of aortic valve stenosis patients and not in thoracic aortic aneurysm or aortic dissection patients, suggesting that the bacterium disseminated to the cardiovascular tissue long before the patient required surgery. The copper/zinc ratio in serum, a marker of infection/inflammation, was significantly elevated in thoracic aortic aneurysm patients, supporting an inflammatory pathogenesis. Patients positive for <i>C. pneumoniae</i> in the aortic valve had more advanced coronary atherosclerosis, further supporting a possible role for <i>C. pneumoniae</i> in atherosclerosis. </p><p>Mice were infected with <i>C. pneumoniae</i> that disseminated to all organs investigated (i.e. lungs, heart, aorta, liver and spleen). Trace element concentrations were altered in infected animals with an increased copper/zinc ratio in serum, a progressively increased iron concentration in the liver and a progressively decreased iron concentration in serum. Iron is important for <i>C. pneumoniae</i> metabolism, and a changed iron homeostasis was noted in infected mice by alterations in iron-regulating proteins, such as DMT1 and hepcidin.</p>
|
5 |
Chlamydophila pneumoniae in Cardiovascular Diseases : Clinical and Experimental StudiesEdvinsson, Marie January 2008 (has links)
Chlamydophila pneumoniae (C. pneumoniae) has been suggested as a stimulator of chronic inflammation in atherosclerosis. C. pneumoniae DNA was demonstrated in aortic biopsies in 50% of patients with stable angina pectoris or acute coronary syndrome undergoing coronary artery bypass grafting. C. pneumoniae mRNA, a marker of replicating bacteria, was demonstrated in 18% of the aortic biopsies. Inflammation may have a role in the pathogenesis of thoracic aortic aneurysm, aortic dissection and aortic valve stenosis. C. pneumoniae DNA was demonstrated in aortic biopsies in 26% of thoracic aortic aneurysm patients and in 11% of aortic dissection patients undergoing thoracic surgery and in 22% of stenotic aortic heart valves from patients undergoing aortic valve replacement. No bacterial mRNA was demonstrated in these aortic biopsies, nor in the valves, suggesting that the infection has passed into a persistent state. C. pneumoniae DNA was demonstrated in peripheral blood mononuclear cells in only 5% of aortic valve stenosis patients and not in thoracic aortic aneurysm or aortic dissection patients, suggesting that the bacterium disseminated to the cardiovascular tissue long before the patient required surgery. The copper/zinc ratio in serum, a marker of infection/inflammation, was significantly elevated in thoracic aortic aneurysm patients, supporting an inflammatory pathogenesis. Patients positive for C. pneumoniae in the aortic valve had more advanced coronary atherosclerosis, further supporting a possible role for C. pneumoniae in atherosclerosis. Mice were infected with C. pneumoniae that disseminated to all organs investigated (i.e. lungs, heart, aorta, liver and spleen). Trace element concentrations were altered in infected animals with an increased copper/zinc ratio in serum, a progressively increased iron concentration in the liver and a progressively decreased iron concentration in serum. Iron is important for C. pneumoniae metabolism, and a changed iron homeostasis was noted in infected mice by alterations in iron-regulating proteins, such as DMT1 and hepcidin.
|
6 |
Genetic and molecular background of ascending aortic aneurysmsHuusko, T. (Tuija) 14 May 2013 (has links)
Abstract
Thoracic aortic aneurysms (TAAs) are a significant source of morbidity and mortality. Classical risk factors for TAAs are hypertension, atherosclerosis, male gender, smoking, age, high body mass index, family history and chronic obstructive pulmonary disease. In addition, in certain cases of TAAs, i.e., ascending aortic aneurysms (AscAA), genetic factors are highly prominent.
Matrix metalloproteinases are in a major role in the destruction of the aortic wall and the imbalance between matrix metalloproteinases, and their inhibitors are involved in the formation of aneurysms. In addition, osteopontin is a potent regulator of matrix metalloproteinases and it is widely expressed in injured arteries. Recently, telomere shortening has been shown to be involved in the development of abdominal aortic aneurysms (AAA). In this aneurysm type, atherosclerosis has a major role. Since atherosclerosis is frequently absent in the case of TAAs, the length of telomeres was measured in the blood samples of TAA patients.
The purpose of this thesis was to study the genetic background of TAAs of the ascending aorta and furthermore, the molecular background of this disease. The first study was done with families with TAAs, and dissections and one chromosomal locus (5q13-14) of the studied seven loci showed a significant genetic linkage for TAAs. Two other studies were done exploiting our TAA case-control material. Study II showed elevated levels of osteopontin, matrix metalloproteinase type 2 and 9 in the plasma and tissue samples of TAA patients compared with controls. In the third study, longer blood leukocyte telomeres were found in the DNA samples of TAA patients compared with controls; furthermore, the elevation of telomere lengthening protein telomerase expression was found in the tissue samples of TAA patients.
This thesis presents region 5q13-14 as a potential genetic regulator for TAAs in Finnish families. In addition, elevated levels of osteopontin, matrix metalloproteinase type 2 and 9 can be considered as a plasma biomarker for aneurysmal disease. Furthermore, longer blood leukocytes were found to be a significant risk factor for developing TAAs. / Tiivistelmä
Rinta-aortan aneurysmat ovat merkittävä sairastumisiin ja kuolemiin johtava tekijä. Perinteisinä riskitekijöinä aneurysmille on pidetty korkeaa verenpainetta, ateroskleroosia, miessukupuolta, tupakointia, ikää, ylipainoa, suvussa esiintyneitä aneurysmatapauksia ja keuhkoahtaumatautia. Näiden lisäksi erityisesti nousevan rinta-aortan alueella esiintyvissä aneurysmissa myös perinnöllisillä tekijöillä on korostunut merkitys.
Matriksimetalloproteinaaseilla ja niiden estäjillä on merkittävä rooli, kun aortan seinämää hajotetaan. Tasapainon järkkyminen kyseisten proteiinien keskinäisessä suhteessa voi johtaa aneurysman muodostumiseen. Myös osteopontiinin tiedetään olevan tehokas matriksimetalloproteinaasien säätelijä, ja sitä tuotetaankin yleisesti vahingoittuneessa verisuonessa. Telomeerien lyhentyminen on vastikään yhdistetty vatsa-aortan alueella esiintyviin aneurysmiin, joissa ateroskleroosilla on yleensä merkittävä rooli. Koska ateroskleroosi on vain harvoin nousevan rinta-aortan alueen aneurysmien taustalla, rinta-aortan aneurysmapotilaiden valkosolujen telomeerien suhteelliset pituudet määritettiin.
Väitöskirjan ensimmäisessä osatyössä keskityttiin löytämään geneettinen kytkentä rinta-aortan aneurysmien ja jonkin seitsemän tutkitun kromosomialueen välille. Geneettinen kytkentä löydettiin kromosomialueelta 5q13-14. Osatöissä 2 ja 3 hyödynnettiin rinta-aortan aneurysmien potilas- ja verrokkiaineistoja. Osatyö 2 osoitti, että matriksimetalloproteinaasien (2 ja 9) määrät ovat kohonneet rinta-aortan aneurysmapotilaiden näytteissä verrokkeihin verrattuna. Osatyössä 3 telomeerien suhteelliset pituudet veren valkosoluissa olivat pidemmät nousevan rinta-aortan aneurysmapotilaiden näytteissä verrokkihenkilöiden näytteisiin verrattuna. Myös telomeraasin tuotto oli lisääntynyt rinta-aortan aneurysmapotilaiden aorttakudosnäytteissä.
Väitöskirjassa esitetään tuloksena kromosomialue 5q13-14 geneettisenä säätelijänä suomalaisissa suvuittain esiintyvissä rinta-aortan aneurysmatapauksissa. Kohonneita matriksimetalloproteinaasien ja osteopontiinin tasoja voidaan lisäksi pitää biomarkkereina rinta-aortan aneurysmien sairastavuudelle. Veren valkosolujen pidemmät telomeerit näyttävät myös olevan yhteydessä rinta-aortan aneurysmien sairastavuuteen.
|
Page generated in 0.0451 seconds