• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aptamer selections against bacterial toxins and cells

Cockrum, Seth Edward 04 November 2013 (has links)
In vitro selection of functional RNA molecules has formed the basis for a new class of molecules termed “aptamers.” Aptamers have been selected against a wide range of molecules, ranging from simple chemical compounds to multi-cellular living organisms. The majority of selections are carried out against targets, such as proteins, that are typically composed of one type of molecule. Targets composed of multiple types of molecules (lipids, proteins, carbohydrates, etc.) are termed “complex,” and examples of successful selections against them include parasites, virions, and red blood cell ghosts. Through various properties inherent in their composition, aptamers have the potential to play a role in everything from therapeutics to broad based detection platforms. Bacterial toxins are a means by which pathogenic bacteria are able to exert an effect on a host organism. Although there are a few aptamer selections that have been carried out against toxins, there have not been any successful selections against whole bacterial cells. As some bacteria are easily grown in laboratory conditions, the possibility of their use as a biological threat agent is relatively high. Therefore, there is a need develop rapid and reliable technologies for the detection of such threats. This work details two aptamer selections carried out against both a bacterial toxin, Bacillus. anthracis protective antigen (PA), and a Bacillus subtilis vegetative cell. The selection against PA resulted in a high affinity aptamer that is capable of inhibiting the cleavage of PA. This cleavage step is the first in the pathway whereby anthrax toxin is able to exert its effect. The selection against B. subtilis vegetative cells is a proof of principle selection. B. subtilis is meant to be a surrogate for B. anthracis, which has long been regarded as a potential bio-weapon. Aptamers selected against these vegetative cells are shown to discriminate between bacterial vegetative cells of the same genus, bacteria of a different genus, and also spores produced by B. subtilis. With these selections as examples, it is hoped that the role of aptamers can continue to be expanded into viable detection systems for biological threat agents. / text
2

Smart connected homes : concepts, risks, and challenges

Bugeja, Joseph January 2018 (has links)
The growth and presence of heterogeneous connected devices inside the home have the potential to provide increased efficiency and quality of life to the residents. Simultaneously, these devices tend to be Internet-connected and continuously monitor, collect, and transmit data about the residents and their daily lifestyle activities. Such data can be of a sensitive nature, such as camera feeds, voice commands, physiological data, and more. This data allows for the implementation of services, personalization support, and benefits offered by smart home technologies. Alas, there has been a rift of security and privacy attacks on connected home devices that compromise the security, safety, and privacy of the occupants. In this thesis, we provide a comprehensive description of the smart connected home ecosystem in terms of its assets, architecture, functionality, and capabilities. Especially, we focus on the data being collected by smart home devices. Such description and organization are necessary as a precursor to perform a rigorous security and privacy analysis of the smart home. Additionally, we seek to identify threat agents, risks, challenges, and propose some mitigation approaches suitable for home environments. Identifying these is core to characterize what is at stake, and to gain insights into what is required to build more robust, resilient, secure, and privacy-preserving smart home systems. Overall, we propose new concepts, models, and methods serving as a foundation for conducting deeper research work in particular linked to smart connected homes. In particular, we propose a taxonomy of devices; classification of data collected by smart connected homes; threat agent model for the smart connected home; and identify challenges, risks, and propose some mitigation approaches. / <p>Note: The papers are not included in the fulltext online.</p>

Page generated in 0.066 seconds