• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 10
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 113
  • 113
  • 80
  • 27
  • 23
  • 19
  • 19
  • 18
  • 18
  • 18
  • 16
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτων

Νομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena. Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή. Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0. Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena. A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian. The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0. The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
112

Semi-microscopic and microscopic three-body models of nuclei and hypernuclei / Modèles semi-microscopiques et microscopiques à trois corps de noyaux et d'hypernoyaux.

Theeten, Marc 14 September 2009 (has links)
De nombreux noyaux atomiques et hypernoyaux se modélisent comme des structures à trois corps. C'est le cas, par exemple, de noyaux à halo, comme 6He, ou de noyaux stables, comme 12C et 9Be. <p>En effet, 6He se caractérise comme un système à trois corps, formé d'un coeur (une particule alpha) et de deux neutrons de valence faiblement liés. Le noyau de 12C peut s'étudier comme un système lié formé de trois particules alphas, tandis que 9Be peut être décrit comme la liaison de deux particules alphas et d'un neutron.<p><p>Dans les exemples précédents, les particules alphas sont des amas de nucléons. Elles possèdent donc une structure interne dont il faut tenir compte en raison du principe de Pauli.<p><p>Les modèles les plus réalistes pour décrire les structures à trois corps sont les modèles "microscopiques". Ces modèles prennent en compte explicitement tous les nucléons et respectent exactement le principe d'antisymétrisation de Pauli. Cependant, l'application de ces modèles est fortement limitée en pratique, car ils exigent de trop nombreux et trop longs calculs.<p>Par conséquent, pour simplifier considérablement les calculs et permettre l'étude des structures à trois corps, des modèles moins détaillés, de type "semi-microscopiques", sont également développés. Dans ces modèles, on représente les amas de nucléons comme de simples particules ponctuelles. Dans ce cas, la modélisation consiste à construire les potentiels effectifs entre les amas, puis à les employer dans les modèles à trois corps.<p><p>Dans ce travail, nous avons développé les modèles "semi-microscopiques à trois corps". Les potentiels effectifs entre amas sont directement déduits des forces entre nucléons (selon la RGM à 2 corps). Ces potentiels sont "non-locaux", et dépendent des énergies des amas qui interagissent. Ils permettent de simuler le principe de Pauli et les échanges de nucléons entre les amas. La dépendance en l'énergie se révèle être un inconvénient dans les modèles à trois corps. Les potentiels effectifs sont par conséquent transformés en de nouveaux potentiels (non-locaux) indépendants de l'énergie, bien adaptés aux modèles à trois corps. Les modèles "semi-microscopiques" sont beaucoup plus simples et plus rapides que les modèles "microscopiques". Ils fournissent les fonctions d'onde des états liés à trois corps des noyaux légers et hypernoyaux. Cela permet d'une part de comprendre les propriétés spectroscopiques nucléaires, et d'autre part, cela ouvre la voie pour de futurs modèles de réactions nucléaires impliquant les structures à trois corps.<p><p>/<p><p>Several atomic nuclei and hypernuclei can be modelled as three-body structures: e.g. two-neutron halo nuclei, such as 6He, and other nuclei, such as 12C and 9Be.<p>Indeed 6He can be represented as a three-body system, made up of a core (an alpha particle) and two weakly bound valence neutrons. The 12C nucleus can be studied as a bound system formed by three alpha particles, while the 9Be nucleus can be described as the binding of two alpha particles and one neutron.<p><p>In these typical examples, the alpha particles are clusters of nucleons. They have an internal structure that must be taken into account because of the Pauli principle.<p><p>The most realistic models are the "microscopic models". In these models, all the nucleons are taken into account, and the Pauli antisymmetrisation principle is fully respected. However, the application of the "microscopic models" is limited in practice, because they require too many laborious calculations.<p>Therefore, in order to greatly simplify the calculations, "semi-microscopic models" are developed. In those models, the clusters of nucleons are treated as ("structureless") pointlike particles. The models then consist in determining the effective potentials between the clusters, and in using them in three-body models.<p><p>In the present work, we have developed "semi-microscopic models". The effective potentials between the clusters are directly obtained from the interactions between nucleons (according to the two-cluster RGM). These potentials are "nonlocal", and depend on the energy of the interacting clusters. The non-locality is a direct consequence of the Pauli principle and the exchanges of nucleons between the clusters. The energy-dependence of the potentials turns out to be a drawback in three-body models. Therefore, the effective potentials are transformed into energy-independent potentials, which can be used in three-body models. The "semi-microscopic models" are much simpler and faster than the "microscopic models". They provide the three-body bound-state wave functions (i.e. the spectroscopic properties and the structure) of light nuclei and hypernuclei. Such wave functions are also the basic ingredient that will be used in future reactions models. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
113

MASCOT Follow-on Mission Concept Study with Enhanced GNC and Propulsion Capability of the Nano-lander for Small Solar System Bodies (SSSB) Missions

Chand, Suditi January 2020 (has links)
This thesis describes the design, implementation and analysis for a preliminary study for DLR's MASCOT lander's next mission to Small Solar System Bodies (SSSB). MASCOT (Mobile Asteroid Surface Scout) is a nano-lander that flew aboard Hayabusa2 (JAXA) to an asteroid, Ryugu. It is a passive nano-spacecraft that can only be deployed ballistically from a hovering spacecraft. Current research focusses on optimizing similar close-approach missions for deploying landers or small cubesats into periodic orbits but does not provide solutions with semi-autonomous small landers deployed from farther distances. This study aims to overcome this short-coming by proposing novel yet simple Guidance, Navigation and Control (GNC) and Propulsion systems for MASCOT. Due to its independent functioning and customisable anatomy, MASCOT can be adapted for several mission scenarios. In this thesis, a particular case-study is modelled for the HERA (ESA) mission. The first phase of the study involves the design of a landing trajectory to the moon of the Didymos binary asteroid system. For a preliminary analysis, the system - Didymain (primary body), Didymoon (secondary body) and MASCOT (third body) - are modelled as a Planar Circular Restricted Three Body Problem (PCR3BP). The numerical integration methodology used for the trajectory is the variable-step Dormand–Prince (Runge Kutta) ODE-4,5 (Ordinary Differential Equation) solver. The model is built in MATLAB-Simulink (2019a) and refined iteratively by conducting a Monte Carlo analysis using the Sensitivity Analysis Tool. Two models - a thruster-controlled system and an alternative hybrid propulsion system of solar sails and thrusters - are simulated and proven to be feasible. The results show that the stable manifold near Lagrange 2 points proposed by Tardivel et. al. for ballistic landings can still be exploited for distant deployments if a single impulse retro-burn is done at an altitude of 65 m to 210 m above ground with error margins of 50 m in position, 5 cm/s in velocity and 0.1 rad in attitude. The next phase is the conceptual design of a MASCOT-variant with GNC abilities. Based on the constraints and requirements of the flown spacecraft, novel GNC and Propulsion systems are chosen. To identify the overriding factors in using commercial-off-the-shelf (COTS) for MASCOT, a market survey is conducted and the manufacturers of short-listed products are consulted. The final phase of the study is to analyse the proposed equipment in terms of parameter scope and capability-oriented trade-offs. Two traceability matrices, one for devised solutions and system and another for solutions versus capabilities, are constructed. The final proposed system is coherent with the given mass, volume and power constraints. A distant deployment of MASCOT-like landers for in-situ observation is suggested as an advantageous and risk-reducing addition to large spacecraft missions to unknown micro-gravity target bodies. Lastly, the implications of this study and the unique advantages of an enhanced MASCOT lander are explored for currently planned SSSB missions ranging from multiple rendezvous, fly-by or sample-return missions. Concluding, this study lays the foundation for future work on advanced GNC concepts for unconventional spacecraft topology for the highly integrated small landers. / <p>This thesis is submitted as per the requirements for the Spacemaster (Round 13) dual master's degree under the Erasmus Mundus Joint Master's Degree Programme. </p> / MASCOT team, DLR

Page generated in 0.0195 seconds