• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spécialisation du pseudo-groupe de Malgrange et irréductibilité / Specialisation of the Malgrange pseudogroup and irreductibility

Davy, Damien 13 December 2016 (has links)
Le pseudo-groupe de Malgrange d'un champ de vecteurs défini sur une variété est la sous-pro-variété de l'espace des jets de biholomorphismes locaux de cette variété obtenue en prenant la clôture de Zariski des flots du champ de vecteurs. Une équation différentielle ordinaire d'ordre 2 définit un champ de vecteurs sur une variété de dimension 3. Le pseudogroupe de Malgrange de ce dernier est de type différentiel d'ordre inférieur ou égal à 2. Une équation différentielle ordinaire d'ordre 2 est dite irréductible si ses solutions générales ne peuvent pas être exprimées à l'aide de solutions d'équations algébriques, différentielles linéaires ou différentielles d'ordre 1. Si le type différentiel du pseudo-groupe de Malgrange d'une équation d'ordre 2 est exactement 2 alors cette dernière est irréductible. Nous donnons plusieurs définitions du pseudo-groupe de Malgrange d'un champ de vecteurs équivalentes à la définition originale donnée par Bernard Malgrange. La définition du premier paragraphe nous permet d'appliquer un théorème de semi-continuité de la dimension des clôtures de Zariski des feuilles d'un feuilletage holomorphe de Philippe Bonnet. Nous obtenons le résultat suivant concernant les équations différentielles ordinaires dépendant de paramètres. Si le type différentiel du pseudo-groupe de Malgrange de l'équation spécialisée en une valeur des paramètres est à exactement 2 alors il en sera de même pour les pseudo-groupes de Malgrange de l'équation spécialisée en des valeurs générales des paramètres. Une première application de ce résultat est de redémontrer l'irréductibilité des équations de Painlevé pour des valeurs générales des paramètres. Une seconde application est de déterminer complètement les pseudo-groupes de Malgrange de ces équations pour des valeurs générales des paramètres. Les définitions du pseudo-groupe de Malgrange et les résultats de spécialisations s'adaptent aux équations aux q-différences. En appliquant ces résultats aux équations de Painlevé discrètes, nous obtenons le pseudo-groupe de Malgrange de ces dernières pour des valeurs générales des paramètres. / The Malgrange pseudogroup of a vector field on a variety is the sub-pro-variety of the jet space of local biholomorphisms of this variety obtained by taking the Zariski closure of the flow of the vector field. A second-order ordinary differential equation defines a vector field on a variety of dimension 3. The differential type of the Malgrange pseudogroup of this one is at most 2. A second-order ordinary differential equation is said to be irreductible if its general solutions can not be expressed using solutions of algebraic equations, linear differential equations or differential equations of order 1. If the differential type of the Malgrange pseudogroup of a second-order differential equation is exactly 2 then the latter is irreductible. We give several definitions of the Malgrange pseudogroup of a vector field which are equivalent to the original definition given by Bernard Malgrange. The definition of the first paragraph leads us to apply a semi-continuity theorem of the dimension of the Zariski closure of the leaves of a holomorphic foliation given by Philippe Bonnet. We obtain the following result about the ordinary differential equations which depend on parameters. If the differential type of the Malgrange pseudogroup of the equation specialized in one value of parameters is exactly two then it will be the same for the Malgrange pseudogroup of the equation specialized in a general value of parameters. A first application of this result is an other proof of the irreductibility of the Painlevé equations for general value of parameters. A second application is to fully determined the Malgrange pseudogroups of this equations for general value of parameters. The definitions of the Malgrange pseudogroup of a vector field and the specialisation results can be adapted the q-difference equations. By applying this results to the discret Painlevé equations, we fully determined the Malgrange pseudogroup of the latters for general value of parameters.
2

Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτων

Νομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena. Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή. Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0. Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena. A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian. The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0. The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
3

Intégrabilité des équations différentielles / Integrability of differential equations

Lazrag, Lanouar 19 December 2012 (has links)
Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire les théories de Ziglin, Yoshida et Morales-Ramis et les motiver. Dans la deuxième partie, on étudie l’intégrabilité des équations différentielles de Newton à trois degrés de liberté dont les forces sont des polynômes homogènes de degrés trois. En utilisant une analyse du groupe de Galois différentiel des équations aux variations d’ordre supérieur, nous faisons une classification (presque) complète des forces génériques et intégrables. Dans une dernière partie, nous intéressons à l’intégrabilité d’un système d’équations différentielles homogènes d’ordre un (système A). L’application directe de la théorie de Morales-Ramis ne donne des obstructions à l’intégrabilité. En dérivant le système A par rapport au temps, nous obtenons un système différentiel de Newton homogène d’ordre 2 (système B). L’avantage est que ce dernier possède des solutions particulières algébriquement non triviales et le critère classique de Morales-Ramis nous permet d’établir des conditions nécessaires d’intégrabilité. Nous prouvons qu’il existe des relations explicites entre les intégrales premières des deux systèmes et nous introduisons une nouvelle méthode de recherche d’intégrales premières que l’on appelle « Extension tangente double ». Nous appliquons cette méthode à des systèmes planaires homogènes quadratiques. Comme deuxième application, nous montrons que, sous certaines conditions, les racines newtoniennes d’un système différentiel de Newton avec force centrale sont intégrables par quadratures. Nous présentons plusieurs systèmes intégrables avec deux, trois et quatre degrés de liberté. / This thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found.

Page generated in 0.1038 seconds