Spelling suggestions: "subject:"threedimensional imaging."" "subject:"three0dimensional imaging.""
361 |
Bringing 3D and quantitative data in flexible endoscopyMertens, Benjamin 10 July 2014 (has links)
In a near future, the computation power will be widely used in endoscopy rooms. It will enable the augmented reality already implemented in some surgery. Before reaching this, a preliminary step is the development of a 3D reconstruction endoscope. In addition to that, endoscopists suffer from a lack of quantitative data to evaluate dimensions and distances, notably for the polyp size measurement.<p>In this thesis, a contribution to more a robust 3D reconstruction endoscopic device is proposed. Structured light technique is used and implemented using a diffractive optical element. Two patterns are developed and compared: the first is based on the spatial-neighbourhood coding strategy, the second on the direct-coding strategy. The latter is implemented on a diffractive optical element and used in an endoscopic 3D reconstruction device. It is tested in several conditions and shows excellent quantitative results but the robustness against bad visual conditions (occlusions, liquids, specular reflection,) must be improved. <p>Based on this technology, an endoscopic ruler is developed. It is dedicated to answer endoscopists lack of measurement system. The pattern is simplified to a single line to be more robust. Quantitative data show a sub-pixel accuracy and the device is robust in all tested cases. The system has then been validated with a gastroenterologist to measure polyps. Compared to literature in this field, this device performs better and is more accurate. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
362 |
Automated 3D object analysis by digital holographic microscopyEl Mallahi, Ahmed 11 June 2013 (has links)
The main objective of this thesis is the development of new processing techniques for digital holograms. The present work is part of the HoloFlow project that intends to integrate the DHM technology for the monitoring of water quality. Different tools for an automated analysis of digital holograms have been developed to detect, refocus and classify particles in continuous fluid flows. A detailed study of the refocusing criterion permits to determine its dependencies and to quantify its robustness. An automated detection procedure has been developed to determine automatically the 3D positions of organisms flowing in the experiment volume. Two detection techniques are proposed: a usual method based on a global threshold and a new robust and generic method based on propagation matrices, allowing to considerably increase the amount of detected organisms (up to 95 %) and the reliability of the detection. To handle the case of aggregates of particles commonly encountered when working with large concentrations, a new separation procedure, based on a complete analysis of the evolution of the focus planes, has been proposed. This method allows the separation aggregates up to an overlapping area of around 80 %. These processing tools have been used to classify organisms where the use of the full interferometric information of species enables high classifier performances to be reached (higher than 93 %). / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
363 |
Acquisition en temps réel, identification et mise en correspondance de données 3DEngels, Laurent 29 September 2011 (has links)
Cette thèse décrit le développement et la mise en œuvre d'un système d'acquisition 3D ayant pour but la localisation temps réel en 3D et l'identification d'électrodes et des antennes utilisées lors d'un examen MEG/EEG. La seconde partie concerne la mise en correspondance de ces données avec les informations de la résonance magnétique. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
364 |
Représentation reconstruction adaptative des hologrammes numériques / Adaptative représentation and reconstruction of digital hologramsViswanathan, Kartik 01 December 2016 (has links)
On constate une forte augmentation de l’intérêt porté sur l’utilisation des technologies vidéo 3D pour des besoins commerciaux, notamment par l’application de l’holographie, pour fournir des images réalistes, qui semblent vivantes. Surtout, pour sa capacité à reconstruire tous les parallaxes nécessaires, afin de permettre de réaliser une vision véritablement immersive qui peut être observée par quiconque (humains, machine ou animal). Malheureusement la grande quantité d'information contenue dans un hologramme le rend inapte à être transmis en temps réel sur les réseaux existants. Cette thèse présente des techniques afin de réduire efficacement la taille de l'hologramme par l'élagage de portions de l'hologramme en fonction de la position de l'observateur. Un grand nombre d'informations contenues dans l'hologramme n'est pas utilisé si le nombre d'observateurs d'une scène immersive est limité. Sous cette hypothèse, éléments de l'hologramme peuvent être décomposés pour que seules les parties requises sensibles au phénomène de diffraction vers un point d'observation particulier soient conservés. Les reconstructions de ces hologrammes élagués peuvent être propagées numériquement ou optiquement. On utilise la transformation en ondelettes pour capter les informations de fréquences localisées depuis l'hologramme. La sélection des ondelettes est basée sur des capacités de localisation en espace et en fréquence. Par exemple, les ondelettes de Gabor et Morlet possèdent une bonne localisation dans l'espace et la fréquence. Ce sont des bons candidats pour la reconstruction des hologrammes suivant la position de l'observateur. Pour cette raison les ondelettes de Shannon sont également utilisées. De plus l'application en fonction du domaine de fréquence des ondelettes de Shannon est présentée pour fournir des calculs rapides de l'élagage en temps réel et de la reconstruction. / With the increased interest in 3D video technologies for commercial purposes, there is renewed interest in holography for providing true, life-like images. Mainly for the hologram's capability to reconstruct all the parallaxes that are needed for a truly immersive views that can be observed by anyone (human, machine or animal). But the large amount of information that is contained in a hologram make it quite unsuitable to be transmitted over existing networks in real-time. In this thesis we present techniques to effectively reduce the size of the hologram by pruning portions of the hologram based on the position of the observer. A large amount of information contained in the hologram is not used if the number of observers of an immersive scene is limited. Under this assumption, parts of the hologram can be pruned out and only the requisite parts that can cause diffraction at an observer point can be retained. For reconstructions these pruned holograms can be propagated numerically or optically. Wavelet transforms are employed to capture the localized frequency information from the hologram. The selection of the wavelets is based on the localization capabilities in the space and frequency domains. Gabor and Morlet wavelets possess good localization in space and frequency and form good candidates for the view based reconstruction system. Shannon wavelets are also employed for this cause and the frequency domain based application using the Shannon wavelet is shown to provide fast calculations for real-time pruning and reconstruction.
|
365 |
Determinação das dimensões espaciais de corpos sólidos por técnicas ópticas de moiré / Moiré aided three dimentional determinations of solid bodiesSilva, Marcos Valério Gebra da, 1971- 18 August 2018 (has links)
Orientadores: Inacio Maria Dal Fabbro, Celina de almeida / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-18T14:46:35Z (GMT). No. of bitstreams: 1
Silva_MarcosValerioGebrada_M.pdf: 5359194 bytes, checksum: e831ae3ea9b56a4d77ebb1a53f2352da (MD5)
Previous issue date: 2011 / Resumo: A medição de sólidos tridimensionais tem recebido uma grande atenção da comunidade científica, devido à sua ampla gama de aplicações. Como por exemplo, no controle de qualidade industrial, na medição do corpo humano para aplicações de ergonomia, e muitas outras áreas. Porém existem diversos métodos e técnicas para se obter tais medições, este trabalho demonstra a técnica de moiré que é uma técnica sem contato e não destrutiva, com um rápido processo de digitalização cujos fenômenos de Franjas de Moiré são o resultado da subtração da projeção de grades sobre um certo objeto com relação as grades projetadas em um plano referencial. Possui medição precisa comparável com a de outros sistemas. Demonstra também a exatidão das técnicas de moiré, sendo dado maior enfoque na técnica de moiré de projeção com deslocamento de fase, e pela utilização de dois tipos de grades a de Ronchi e senoidal, onde são observados os possíveis erros das diversas técnicas de moiré e por outros métodos metrológicos. Neste trabalho foi comprovado o melhor desempenho dos tipos e variação da frequência de grades incluindo vários exemplos práticos da sua aplicação em sólidos regulares e irregulares (frutos), comparação com outras técnicas em vários problemas em engenharia agrícola e determinação volumétrica de sólidos regulares e irregulares. Emprego de "softwares" gratuitos o qual também foi uma preocupação para disseminação da técnica, tais como ImageJ, RisingSun Moiré, SCILAB/SIP e rotinas / Abstract: Measurement of three-dimensional solids has received great attention from the scientific community due to its wide range of applications. As examples in can be mentioned industrial quality control, human body measurement applied to ergonomics and many other areas. The pertinent literature discloses several methods and techniques to carry three dimensional measurements. Moiré technique is a group of non-contact and non-destructive methods based on the more phenomena which fringes are the result of the subtraction of the grid projected onto the surface under study and the grid projected onto a reference plane. Moiré methods are yield accurate measurements if compared to other measuring systems. This work was foccused on the projection moiré technique with phase shift, and the use of two types of grids named Ronchi and sinusoidal one. Metrological errors of various techniques as compared with the moiré method have been determined as well. This work demonstrated the best performance of grid frequency variation through several practical applied to regular and irregular solids (fruits). Body dimensions were compared with convention techniques as water immersion and calypper. The application of free software such as ImageJ, RisingSun Moire, Scilab / SIP and routines was considered very useful to reach the final results / Mestrado / Maquinas Agricolas / Mestre em Engenharia Agrícola
|
366 |
Three-dimensional imaging and molecular analysis of tissue elongation during Drosophila egg chamber developmentPurkert, Sonja 10 September 2021 (has links)
The shape of a tissue or entire organ is important for its biological function. Tissue and organ shapes arise from molecular activities that control and execute cellular processes, such as oriented cell divisions, cell shape changes or cell rearrangements. However, how molecular activities control cellular processes during the shaping of organs is not well understood. This thesis spotlights two aspects of organ shaping based on Drosophila egg chambers as model tissue. One focus lies on three-dimensional imaging of cellular mechanics during development and the other aspect dissects the molecular function of the fat2 gene, that is crucial for tissue elongation in Drosophila egg chambers.:TABLE OF CONTENTS
1 SUMMARY ................................................................................................................... I
2 ZUSAMMENFASSUNG ...............................................................................................III
3 TABLE OF CONTENTS ................................................................................................V
4 LISTS ..........................................................................................................................10
5 INTRODUCTION ........................................................................................................16
6 AIMS OF THE THESIS ...............................................................................................40
7 MATERIALS AND METHODS .....................................................................................41
8 RESULTS ....................................................................................................................58
9 DISCUSSION .............................................................................................................92
10 ACKNOWLEDGEMENTS .......................................................................................103
11 REFERENCES ........................................................................................................105
12 APPENDIX ..............................................................................................................118
13 ERKLÄRUNG ..........................................................................................................123
|
367 |
Seismic exploration methods for hydrothermal dolomite reservoirs : a case study of the Trenton-Black River GroupsOgiesoba, Osareni Christopher. January 2007 (has links)
No description available.
|
368 |
Mathematical analysis of the lithium ion transport in lithium ion batteries using three dimensional reconstructed electrodesLim, Cheol Woong 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Computational analysis of lithium ion batteries has been improved since Newman and et al. suggested the porous electrode theory. It assumed the electrode as a simple structure of homogeneous spherical particles. Bruggeman relationship which characterizes porous material by a simple equation was adopted in the homogeneous electrode model instead of the electrode morphology. To improve the prediction of a cell performance, the numerical analysis requires the realistic microstructure of the cell.
Based on the experimentally determined microstructure of the positive and negative electrodes of a lithium ion battery (LIB) using x-ray micro/nano-CT technology, three dimensional (3D) simulations have been presented in this research. Tortuosity of the microstructures has been calculated by a linear diffusion equation to characterize the 3D morphology. The obtained tortuosity and porosity results pointed out that the Bruggeman relationship is not sufficiently estimate the tortuosity by the porosity of electrodes.
We studied the diffusion-induced stress numerically based on realistic morphology of reconstructed particles during the lithium ion intercalation process. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results showed that the intercalation stresses of particles depend on their geometric characteristics. The highest
von Mises stress and tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.
With the reconstructed positive electrode structure, local effects in the LIB cathode electrode during galvanostatic discharge process have been studied. The simulation results reported that large current density usually occurs at the joints between cathode active material particles and in the small channels in electrolyte, which will generate high electric joule power. By using the 3D real image of a LIB cathode electrode, numerical simulation results revealed that the spatial distribution of variable fields such as concentration, voltage, reaction rate, overpotential, and etc. in the cathode electrode are complicated and non-uniform, especially at high discharge rates.
|
369 |
3D ENDOSCOPY VIDEO GENERATED USING DEPTH INFERENCE: CONVERTING 2D TO 3DRao, Swetcha 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A novel algorithm was developed to convert raw 2-dimensional endoscope videos into 3-dimensional view. Minimally invasive surgeries aided with 3D view of the invivo site have shown to reduce errors and improve training time compared to those with 2D view. The novelty of this algorithm is that two cues in the images have been used to develop the 3D. Illumination is the rst cue used to nd the darkest regions in the endoscopy images in order to locate the vanishing point(s). The second cue is the presence of ridge-like structures in the in-vivo images of the endoscopy image sequence. Edge detection is used to map these ridge-like structures into concentric ellipses with their common center at the darkest spot. Then, these two observations are used to infer the depth of the endoscopy videos; which then serves to convert them from 2D to 3D. The processing time is between 21 seconds to 20 minutes for each frame, on a 2.27GHz CPU. The time depends on the number of edge pixels present in the edge-detection image. The accuracy of ellipse detection was measured to be 98.98% to 99.99%. The algorithm was tested on 3 truth images with known ellipse parameters and also on real bronchoscopy image sequences from two surgical procedures. Out of 1020 frames tested in total, 688 frames had single vanishing point while 332 frames had two vanishing points. Our algorithm detected the single vanishing point in 653 of the 688 frames and two vanishing points in 322 of the 332 frames.
|
370 |
Harmonizing Audio and Human Interaction: Enhancement, Analysis, and Application of Audio Signals via Machine Learning ApproachesXu, Ruilin January 2024 (has links)
In this thesis, we tackle key challenges in processing audio signals, specifically focusing on speech and music. These signals are crucial for human interaction with both the environment and machines. Our research addresses three core topics: speech denoising, speech dereverberation, and music-dance generation, each of which plays a vital role in enhancing the harmony between audio and human interaction.
Leveraging machine learning and human-centric approaches inspired by classical algorithms, we develop methods to mitigate common audio degradations, such as additive noise and multiplicative reverberation, delivering high-quality audio suitable for human use and applications. Furthermore, we introduce a real-time, music-responsive system for generating 3D dance animations, advancing the integration of audio signals with human engagement.
The first focus of our thesis is the elimination of additive noise from audio signals by focusing on short pauses, or silent intervals, in human speech. These brief pauses provide key insights into the noise profile, enabling our model to dynamically reduce ambient noise from speech. Tested across diverse datasets, our method outperforms traditional and audiovisual denoising techniques, showcasing its effectiveness and adaptability across different languages and even musical contexts.
In the second work of our research, we address reverberation removal from audio signals, a task traditionally reliant on knowing the environment's exact impulse response—a requirement often impractical in real-world settings. Our novel solution combines the strengths of classical and learning-based approaches, tailored for online communication contexts. This human-centric method includes a one-time personalization step, adapting to specific environments and human speakers. The two-stage model, integrating feature-based Wiener deconvolution and network refinement, has shown through extensive experiments to outperform current methods, both in effectiveness and user preference.
Transitioning from foundational audio signal enhancement and analysis to a more dynamic realm, our research culminates in a novel, interactive system for real-time 3D human dance generation. Contrasting with the passive human-centric assumptions of our previous works, this final work actively engages users, enabling direct interaction with a system that synchronizes expressive dance movements to live music, spanning various musical elements like type, tempo, and energy. This innovative approach, diverging from traditional choreography methods, leverages spontaneous improvisation to generate unique dance sequences. These sequences, a mix of pre-recorded choreographies and algorithm-generated transitions, adapt to real-time audio inputs, offering customization through personal 3D avatars. This system's user-centric design and interactivity are validated by user studies, confirming its effectiveness in creating an immersive and engaging user experience.
|
Page generated in 0.1248 seconds