1 |
Croissance de la phase MAX sur SiC contact ohmique stable et fiable à haute température / MAX phase growth on SiC ohmic contact stable and reliable at high temperatureAbi Tannous, Tony 21 December 2015 (has links)
Nous avons pour objectif de jeter les bases d’une technologie en totale rupture avec celles existantes pour la fabrication d’une nouvelle génération de composants électroniques à base du Carbure de Silicium pour les applications à très hautes températures (jusqu’à 600°C). Cette nouvelle technologie est basée sur l'emploi d'une nouvelle génération de matériaux pour les contacts ohmiques haute température. Nous avons ciblé la phase Ti3SiC2, qui est une phase céramique/métallique, pour former un bon contact ohmique stable et fiable à haute et très haute température. A savoir que l’aspect céramique est nécessaire pour assurer une bonne stabilité thermique à haute température, et l’aspect métallique est nécessaire pour obtenir des bonnes propriétés électriques (bonne conductivité électrique, faible résistance électrique…). Dans le but d’élaborer le Ti3SiC2 sur SiC, un film mince de 200 nm d’un alliage TixAl1-x a été déposé sur SiC-4H suivit d’un recuit sous Ar. Dans cette étude, on a fait varier la concentration du Ti et d’Al dans le dépôt métallique (Ti20Al80, Ti30Al70, Ti50Al50 et Ti), et on a aussi varié la température de recuit de 900°C à 1200°C. Des analyses structurales comme le DRX, MET, MEB et XPS ont été effectuées après recuit. Pour caractériser électriquement la couche Ti3SiC2 synthétisée sur SiC, des motifs TLM ont été réalisés. Des caractérisations électriques à température ambiante et à très haute température (jusqu’à 600°C) ont été mis en œuvre pour chaque type de dépôt et par conséquence la hauteur de barrière de potentielle a été également déterminée. Enfin, pour étudier la stabilité thermique du Ti3SiC2 sur SiC, des tests de vieillissement ont été réalisé à 600°C sous Ar. / The growth of Ti3SiC2thin films was studied onto 4H-SiC (0 0 0 1) 8◦and 4◦-off substrates by thermalannealing of TixAl1−x(0.5 ≤ x ≤ 1) layers. The annealing time was fixed at 10 min under Argon atmosphere.The synthesis conditions were also investigated according to the annealing temperature (900–1200◦C)after deposition. X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM) show that thelayer of Ti3SiC2is epitaxially grown on the 4H-SiC substrate. In addition the interface looks sharp andsmooth with evidence of interfacial ordering. Moreover, during the annealing procedure, the formationof unwanted aluminum oxide was detected by using X-Ray Photoelectron Spectroscopy (XPS); this layercan be removed by using a specific annealing procedure. Using TLM structures, the Specific Contact Resistance (SCR) at room temperature of all contacts was measured. The temperature dependence up to 600°C of the SCR of the best contacts was studied to understand the current mechanisms at the Ti3SiC2/SiC interface. Experimental results are in agreement with the thermionic field emission (TFE) theory. With this model, the barrier height of the contact varies between 0.71 to 0.85 eV.
|
2 |
Carbide and MAX-Phase Engineering by Thin Film Synthesis / Karbid och MAX-fas design med tunnfilmssyntesPalmquist, Jens-Petter January 2004 (has links)
This thesis reports on the development of low-temperature processes for transition metal carbide and MAX-phase thin film growth. Magnetron sputtering and evaporation, far from thermodynamical equilibrium, have been utilised to engineer the properties of the films by physical and chemical control. Deposition of W, W2C and β-WC1-x films with controlled microstructure, from nanocrystalline to epitaxial, is shown in the W-C system down to 100 oC. W films with upto 20 at% C exhibited an extreme solid-solution hardening effect, with a nanoindentation hardness maximum of 35 GPa. Furthermore, the design of epitaxial ternary carbide films is demonstrated in the Ti1-xVxCy system in the form of controlled unit-cell parameters, strain-free films with a perfect match to the substrate, and ternary epitaxial gradient films. Moreover, phase stabilisation and pseudomorphic growth can be tuned in (Nb,Mo)C and (Ti,W)C films. The results obtained can be used for example to optimise electrical contacts in SiC high-power semiconductor devices. A large part of this thesis focuses on the deposition of MAX-phases. These compounds constitute a family of thermally stable nanolaminates with composition Mn+1AXn, n=1, 2 or 3, where M is an early transition metal, A is generally a group 13-14 element, and X is C or N. They show a combination of typical ceramic and metallic properties and are also machinable by virtue of the unique deformation behaviour observed only in laminates. So far, the MAX-phases have almost exclusively been prepared by high-temperature sintering and studied in bulk form. However, this thesis establishes a patented seed layer approach for successful MAX-phase thin film depositions down to 750 oC. For the first time, single-phase and epitaxial films of Ti3SiC2, Ti3AlC2 and Ti2AlC have been grown. The method has also been used to synthesise a new MAX-phase, Ti4SiC3. In addition, two previously unreported intergrown MAX-type structures are presented, Ti5Si2C3 and Ti7Si2C5. Combined theoretical and experimental results show the possibility to deposit films with very low bulk resistivity and designed mechanical properties. Furthermore, the demonstration of MAX-phase and carbide multilayer films paves the way for macrostructure engineering, for example, in coatings for low-friction or wear applications.
|
3 |
Carbide and MAX-Phase Engineering by Thin Film Synthesis / Karbid och MAX-fas design med tunnfilmssyntesPalmquist, Jens-Petter January 2004 (has links)
<p>This thesis reports on the development of low-temperature processes for transition metal carbide and MAX-phase thin film growth. Magnetron sputtering and evaporation, far from thermodynamical equilibrium, have been utilised to engineer the properties of the films by physical and chemical control. Deposition of W, W<sub>2</sub>C and β-WC<sub>1-x</sub> films with controlled microstructure, from nanocrystalline to epitaxial, is shown in the W-C system down to 100 <sup>o</sup>C. W films with upto 20 at% C exhibited an extreme solid-solution hardening effect, with a nanoindentation hardness maximum of 35 GPa. Furthermore, the design of epitaxial ternary carbide films is demonstrated in the Ti<sub>1-x</sub>V<sub>x</sub>C<sub>y</sub> system in the form of controlled unit-cell parameters, strain-free films with a perfect match to the substrate, and ternary epitaxial gradient films. Moreover, phase stabilisation and pseudomorphic growth can be tuned in (Nb,Mo)C and (Ti,W)C films. The results obtained can be used for example to optimise electrical contacts in SiC high-power semiconductor devices. </p><p>A large part of this thesis focuses on the deposition of MAX-phases. These compounds constitute a family of thermally stable nanolaminates with composition M<sub>n+1</sub>AX<sub>n</sub>, n=1, 2 or 3, where M is an early transition metal, A is generally a group 13-14 element, and X is C or N. They show a combination of typical ceramic and metallic properties and are also machinable by virtue of the unique deformation behaviour observed only in laminates. So far, the MAX-phases have almost exclusively been prepared by high-temperature sintering and studied in bulk form. However, this thesis establishes a patented seed layer approach for successful MAX-phase thin film depositions down to 750 <sup>o</sup>C. For the first time, single-phase and epitaxial films of Ti<sub>3</sub>SiC<sub>2</sub>, Ti<sub>3</sub>AlC<sub>2</sub> and Ti<sub>2</sub>AlC have been grown. The method has also been used to synthesise a new MAX-phase, Ti<sub>4</sub>SiC<sub>3</sub>. In addition, two previously unreported intergrown MAX-type structures are presented, Ti<sub>5</sub>Si<sub>2</sub>C<sub>3</sub> and Ti<sub>7</sub>Si<sub>2</sub>C<sub>5</sub>. Combined theoretical and experimental results show the possibility to deposit films with very low bulk resistivity and designed mechanical properties. Furthermore, the demonstration of MAX-phase and carbide multilayer films paves the way for macrostructure engineering, for example, in coatings for low-friction or wear applications.</p>
|
4 |
Untersuchung der elektrischen Hyperfeinwechselwirkung in M<sub>n+1</sub>AX<sub>n</sub>-Phasen mittels der gestörten γ-γ-Winkelkorrelation / Investigation of the electric hyperfine interaction in M<sub>n+1</sub>AX<sub>n</sub>-phases by means of perturbed γ-γ-angular correlationJürgens, Daniel 28 June 2013 (has links)
Mn+1AXn-Phasen sind thermodynamisch stabile nanolaminierte Ternärcarbide und -nitride, die sowohl metallische als auch keramische Eigenschaften aufweisen. Der Buchstabe M steht für ein frühes Übergangsmetall, der Buchstabe A für ein A-Element aus den Gruppen IIIA – VIA und X für Kohlenstoff und/oder Stickstoff. Die M-Atome bilden Oktaederschichten mit X-Atomen in ihren Zentren. Der Index n beschreibt die Dicke der Mn+1Xn-Lage, die zwischen zwei hexagonalen A-Schichten eingebettet ist. Die außergewöhnlichen Eigenschaften dieser Materialien haben ihren Ursprung in ihrer Mikrostruktur. Um einen Einblick auf atomarer Ebene zu gewinnen wird die Messmethode der gestörten γ-γ-Winkelkorrelation (PAC) angewendet. Die radioaktiven Sonden 111In/111Cd und 181Hf/181Ta werden durch Ionenimplantation und/oder durch Neutronenaktivierung in das Wirtsmaterial eingebracht, um den elektrischen Feldgradienten (EFG) zu messen, der am Gitterpatz des Sondenatoms herrscht.
Das erste Ziel der Arbeit ist die Suche nach optimalen Ausheilparametern, mit denen ein möglichst hoher Anteil der Sonden die gleiche lokale Umgebung spürt. Der nächste Schritt ist die Bestimmung des Gitterplatzes der Sonden in der MAX-Struktur. Als Ergebnis kann festgestellt werden, dass 111In in den In- und Al-basierten MAX-Phasen fast ausschließlich den A-Platz besetzt, während 181Hf in Hf2InC auf dem M-Platz eingebaut wird. Als überraschendes Ergebnis zeigt diese Arbeit, dass die PAC-Methode bei Phasen mit gleichen Konstituenten, aber unterschiedlicher Mn+1Xn-Schichtdicke sensitiv auf die Änderung der Stapelfolge ist.
Die Experimente werden mit umfangreichen Rechnungen auf Basis der Dichtefunktionaltheorie (DFT) verglichen, die hier erstmalig für nahezu alle Mitglieder der Familie der MAX-Verbindungen durchgeführt wurden. Die DFT-Rechnungen reproduzieren die gemessenen EFGs mit hoher quantitativer Genauigkeit und stützen die Hypothese, dass sich die Sonden auf den prognostizierten Gitterplätzen befinden.
|
Page generated in 0.0134 seconds