• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 37
  • 37
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

チベット高原南東部プマユムツォ湖大島から採取した土壌(陸成堆積物)の^<14>C年代測定

KAKEGAWA, Takeshi, NARA Watanabe, Fumiko, HORIUCHI, Kazuho, SAKAI, Takahiro, MATSUNAKA, Tetsuya, NISHIMURA, Mitsugu, NAKAMURA, Toshio, WATANABE, Takahiro, ZHU, Liping, 掛川, 武, 奈良, 郁子, LIN, Xiao, 堀内, 一穂, 酒井, 貴悠, 松中, 哲也, 西村, 弥亜, 中村, 俊夫, 渡邊, 隆広 03 1900 (has links)
第22回名古屋大学年代測定総合研究センターシンポジウム平成21(2009)年度報告
12

シベリア・チベット地域の湖沼から採取した湖底柱状堆積物の放射性炭素年代測定一4 : PY608E-PC コア試料(チベット・プマユムツォ湖)

ZHU, Liping, WANG, Junbo, KAKEGAWA, Takeshi, NARA Watanabe, Fumiko, MATSUNAKA, Tetsuya, NISHIMURA, Mitsugu, NAKAMURA, Toshio, WATANABE, Takahiro, ZHU, Liping, WANG, Junbo, 掛川, 武, 奈良, 郁子, 松中, 哲也, 西村, 弥亜, 中村, 俊夫, 渡邊, 隆広 03 1900 (has links)
No description available.
13

Regional Precipitation Response to Enhanced Monsoon Circulation through the Holocene Using Closed-Basin Paleolakes on the Tibetan Plateau

Hudson, Adam Michael January 2015 (has links)
The history of climatic changes in the Asian Summer Monsoon system over the Tibetan Plateau during the Holocene has been the subject of significant research due to the importance of the plateau as the headwaters for many major rivers providing water resources to the surrounding large, populous countries. In general, previous research has concluded that monsoon rainfall and summer temperatures peaked during the early Holocene (9-11 ka BP) in Tibet, coincident with peak Northern Hemisphere summer insolation. Atmospheric teleconnections with upstream Northern Hemisphere westerly circulation patterns influenced by North Atlantic sea surface temperature changes have also been noted at millennial and centennial timescales. However, recent studies have noted that the timing of peak monsoon warmth and wetness during the Holocene are not synchronous across the entirety of the Tibetan Plateau, and studies of modern precipitation indicate several distinct regions of monsoon precipitation variability at interannual scales, suggesting the monsoon response to past and future climate change may be regionally heterogeneous for the plateau. Clear assessment of this regionality within the monsoon climate region is a topic of continuing research, but it has been hindered by lack of climate records in remote areas, dating difficulties, and concerns over the comparability of interpreted climate-proxy relationships between the many different biological, hydrological, and geochemical proxies applied. The first part of this dissertation uses ¹⁴C and U-Th series geochronology, sedimentology, and GIS analysis of exposed lake shoreline sediments surrounding the numerous closed-basin lake systems of the central and western Tibetan Plateau to investigate regional heterogeneity in monsoon rainfall, and to develop a new well-dated lake level record from the Ngangla Ring Tso lake system in the poorly studied southwestern region. The major conclusions are: 1) peak early Holocene monsoon rainfall, recorded by the highest paleoshorelines surrounding 130 lake systems, intensified more relative to today in the western part (west of 86°E longitude) of the Tibetan Plateau when compared to eastern regions, closely following regions of modern rainfall variability; 2) monsoon rainfall in the Ngangla Ring Tso region peaked during the early Holocene insolation maximum, consistent with other records, remained significantly higher than modern until ~6.0 ka BP, but with abrupt reductions in monsoon rainfall associated with North Atlantic ice-rafted debris peaks. The warm and wet period of the early and middle Holocene was also likely coincident with the first major colonization of the Tibetan Plateau by prehistoric humans. Current research suggests early foragers employing stone tools first forayed into the middle elevation areas above 3,000 m elevation on the northeastern fringe of the plateau as early as 14.8 ka BP, and therefore the dominant hypothesis suggests plateau colonization proceeded from this direction, heading westward through the Holocene. However, well studied and dated archaeological sites from the high plateau are exceedingly rare, requiring further investigation. The second part of this dissertation presents new age controls for the Holocene Zhongba microlithic site in the southwestern Tibetan Plateau, using ¹⁴C dating of organic and carbonate-rich paleo-wetlands sediments hosting in situ stone artifacts. The major conclusions of this study are: 1) artifacts at the Zhongba site, which are typologically similar to microlithics across the plateau, can be no older than 6.5 ka BP, consistent with the prevailing east-to-west colonization hypothesis, and 2) microlithic tools continued to be important as late as 1.3 ka BP at the site, even though metal is found in sites of similar age elsewhere in Tibet.
14

The Nature of Continental Rocks During Collisional Orogenesis and Tectonic Implications: Tibet

Pullen, Alexander January 2010 (has links)
This dissertation research addresses the tectonism of continental crust during ocean basin closure, suturing between continental landmasses, and collisional orogenesis. The new data and insights presented here were gathered through localized geologic investigations of the Tibetan Plateau of central Asia. This area of central Asia is an ideal location to study these fundamental tectonic processes because it has been the locus of numerous Tethyan ocean basins and terminal collisions between continents during Phanerozoic accretion of Gondwana-derived landmasses onto the southern margin of Eurasia. In this work, I propose, in many orogens, that high-pressure (HP) metamorphism of continental rocks may mark the early stages of the suturing process between continental landmasses rather than the culmination of suturing. This insight has been acquired from a geologic-, geochronologic-, and thermochronologic-based investigation of the HP-near ultrahigh-pressure bearing Triassic metasedimentary metamorphic belt in central Tibet. This work shows near synchronous continent-continent collisions between landmass adjacent to the Paleo-Tethys ocean prior to its final closure in Late Triassic time. In addition, this work shows that Mediterranean-style tectonics may be more widespread during accretionary tectonics than previously thought. A comparison between the distribution of the HP bearing metamorphic belt, autochthonous crystalline basement, and geophysical images of Tibet suggests that a Mesozoic tectonic feature may be controlling the structure and distribution of melt within the middle crust of the Tibetan Plateau. This concept underscores the importance of inherited tectonic frameworks on the evolution of orogenic plateaus. Work in southwest Tibet, along the India-Asia suture zone, highlights the complex behavior of continental crust during collisional orogenesis. This work identifies previously undocumented magmatism, crustal antexis, and high-grade metamorphism along the India-Asia suture. In this work I attribute these observations to the initial interactions between Indian, Asian, and subducting Neo-Tethys oceanic lithosphere.
15

The Late Miocene through Modern Evolution of the Zhada Basin, South-Western Tibet

Saylor, Joel Edward January 2008 (has links)
The uplift history of the Tibetan Plateau is poorly constrained in part due to its complex and extended tectonic history. This study uses basin analysis, stable isotope analysis, magnetostratigraphy, detrital zircon U-Pb dating, and paleoaltimetry, and frequency analysis to reconstruct the tectonic, spatial, and environmental evolution of the Zhada basin in southwestern Tibet since the late Miocene. The Zhada Formation, which occupies the Zhada basin and consists of ~ 850 m of fluvial, alluvial fan, eolian, and lacustrine sediments, is undeformed and lies in angular unconformity above Tethyan sedimentary sequence strata. The most negative Miocene δ¹⁸Opsw (paleo-surface water) values reconstructed from aquatic gastropods are significantly more negative than the most negative modern δ¹⁸O(sw) (surface water) values. In the absence of any known climate change which would have produced this difference, we interpret it as indicating a decrease in elevation in the catchment between the late Miocene and the present. Basin analysis indicates that the decrease in elevation was accomplished by two low-angle detachment faults which root beneath the Zhada basin and exhume mid-crustal rocks. This exhumation results from ongoing arc-parallel extension and provides accommodation for Zhada basin fill. Sequence stratigraphy shows that the basin evolved from an overfilled to an underfilled basin but that further evolution was truncated by an abrupt return to overfilled, incising conditions. This evolution is linked to progressive damming of the paleo-Sutlej River. During the underfilled portion of basin evolution, depositional environments were strongly influenced by Milancovitch cyclicity: particularly at the precession and eccentricity frequencies.
16

Magnetotelluric constraints on the role of fluids in convergent plate boundaries

Rippe, Dennis Unknown Date
No description available.
17

The Plateau Pika: A Keystone Engineer on the Tibetan Plateau

January 2010 (has links)
abstract: The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However, pikas are commonly regarded as pests, and are heavily poisoned throughout their range. The underlying assumption of eradication programs is that eliminating pikas will improve rangeland quality and decrease soil erosion. This dissertation explores the link between plateau pikas and the alpine meadow ecosystem in Qinghai Province, PRC. This research uses both comparative field studies and theoretical modeling to clarify the role of pika disturbance. Specifically, these studies quantify the impact of pikas on nutrient cycling (via nutrient concentrations of vegetation and soil), hydrology (via water infiltration), local landscape properties (via spatial pattern description), and vascular plant communities (via species richness and composition). The competitive relationship between livestock and pikas is examined with a mathematical model. Results of this research indicate that pika colonies have both local and community level effects on water infiltration and plant species richness. A major contribution of pika disturbance is increased spatial heterogeneity, which likely underlies differences in the plant community. These findings suggest that the positive impact of plateau pikas on rangeland resources has been undervalued. In concurrence with other studies, this work concludes that plateau pikas provide valuable ecosystem services on the Tibetan Plateau. / Dissertation/Thesis / Ph.D. Biology 2010
18

Palaeoglaciology of the central Tibetan Plateau

Morén, Björn January 2010 (has links)
The glacial history of the Tibetan Plateau has long been a contentious topic with widely different reconstructions. For Tanggula Shan, an extensive mountain range on the central Tibetan Plateau, multiple glacial reconstruc- tions and studies on the glacial chronology have been presented. However, the glacial geomorphological record has been sparse resulting in insufficient data to fully infer the area’s palaeoglaciology. Focussing on four landform categories, glacial valleys, marginal moraines, hummocky terrain, and glacial lineations; a glacial geomorphological map was produced, using Landsat 7 ETM+ satellite imagery, SRTM digital elevation model, and Google Earth. This map, together with GIS analyses and available cosmogenic exposure and electron spin reso- nance ages from the study area, was used to investigate the extent of former glaciations. Cosmogenic exposure and electron spin resonance ages range from 18.4 ± 1.6 to 203.4 ± 33.2 ka (recalculated using the CRONUS calculator). The extent of the glacial footprint is restricted to the high mountain areas, and is similar in extent to earlier glacial reconstructions. This glacial footprint can tentatively be explained by a monsoonal influence in the southeast, with the influence diminishing to the northwest. Alternatively, the precipitation gradient might have resulted in cold-based ice in the west and warm-based ice in the east. These variations in ice regime could have left fewer traces of glaciation in the west, than in the east. There is no evidence supporting an ice sheet covering the entire Tibetan Plateau. Rather, the available data support a smaller ice field in the high mountain areas, with a maximum extent well before the Last Glacial Maximum.
19

Active Tectonics of the Northeastern Tibetan Plateau / チベット高原北東部のアクティブテクトニクス

Chen, Peng 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22113号 / 理博第4540号 / 新制||理||1652(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 福田 洋一, 教授 岩田 知孝, 准教授 深畑 幸俊 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
20

Reconstructing Holocene Indian Summer Monsoon Variability Using High Resolution Sediments from the Southeastern Tibet

Perello, Melanie Marie 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change.

Page generated in 0.0635 seconds