• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 27
  • 17
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 235
  • 36
  • 35
  • 35
  • 25
  • 25
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Modelling the middle atmosphere and its sensitivity to climate change

Jonsson, Andreas January 2005 (has links)
<p>The Earth's middle atmosphere at about 10-100 km has shown a substantial sensitivity to human activities. First, the ozone layer has been reduced since the the early 1980s due to man-made emissions of halogenated hydrocarbons. Second, the middle atmosphere has been identified as a region showing clear evidence of climate change due to increased emissions of greenhouse gases. While increased CO<sub>2 </sub>abundances are expected to lead to a warmer climate near the Earth's surface, observations show that the middle atmosphere has been cooling by up to 2-3 degrees per decade over the past few decades. This is partly due to CO<sub>2</sub> increases and partly due to ozone depletion.</p><p>Predicting the future development of the middle atmosphere is problematic because of strong feedbacks between temperature and ozone. Ozone absorbs solar ultraviolet radiation and thus warms middle atmosphere, and also, ozone chemistry is temperature dependent, so that temperature changes are modulated by ozone changes.</p><p>This thesis examines the middle atmospheric response to a doubling of the atmospheric CO<sub>2</sub> content using a coupled chemistry-climate model. The effects can be separated in the intrinsic CO<sub>2</sub>-induced radiative response, the radiative feedback through ozone changes and the response due to changes in the climate of the underlying atmosphere and surface. The results show, as expected, a substantial cooling throughout the middle atmosphere, mainly due to the radiative impact of the CO<sub>2</sub> increase. Model simulations with and without coupled chemistry show that the ozone feedback reduces the temperature response by up to 40%. Further analyses show that the ozone changes are caused primarily by the temperature dependency of the reaction O+O<sub>2</sub>+M->O<sub>3</sub>+M. The impact of changes in the surface climate on the middle atmosphere is generally small. In particular, no noticeable change in upward propagating planetary wave flux from the lower atmosphere is found. The temperature response in the polar regions is non-robust and thus, for the model used here, polar ozone loss does not appear to be sensitive to climate change in the lower atmosphere as has been suggested recently. The large interannual variability in the polar regions suggests that simulations longer than 30 years will be necessary for further analysis of the effects in this region.</p><p>The thesis also addresses the long-standing dilemma that models tend to underestimate the ozone concentration at altitudes 40-75 km, which has important implications for climate change studies in this region. A photochemical box model is used to examine the photochemical aspects of this problem. At 40-55 km, the model reproduces satellite observations to within 10%, thus showing a substantial reduction in the ozone deficit problem. At 60-75 km, however, the model underestimates the observations by up to 35%, suggesting a significant lack of understanding of the chemistry and radiation in this region.</p>
132

DEM generation and ocean tide modeling over Sulzberger Ice Shelf, West Antarctica, using synthetic aperture radar interferometry

Baek, Sang-Ho, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 132-144).
133

Modelling the middle atmosphere and its sensitivity to climate change

Jonsson, Andreas January 2005 (has links)
The Earth's middle atmosphere at about 10-100 km has shown a substantial sensitivity to human activities. First, the ozone layer has been reduced since the the early 1980s due to man-made emissions of halogenated hydrocarbons. Second, the middle atmosphere has been identified as a region showing clear evidence of climate change due to increased emissions of greenhouse gases. While increased CO2 abundances are expected to lead to a warmer climate near the Earth's surface, observations show that the middle atmosphere has been cooling by up to 2-3 degrees per decade over the past few decades. This is partly due to CO2 increases and partly due to ozone depletion. Predicting the future development of the middle atmosphere is problematic because of strong feedbacks between temperature and ozone. Ozone absorbs solar ultraviolet radiation and thus warms middle atmosphere, and also, ozone chemistry is temperature dependent, so that temperature changes are modulated by ozone changes. This thesis examines the middle atmospheric response to a doubling of the atmospheric CO2 content using a coupled chemistry-climate model. The effects can be separated in the intrinsic CO2-induced radiative response, the radiative feedback through ozone changes and the response due to changes in the climate of the underlying atmosphere and surface. The results show, as expected, a substantial cooling throughout the middle atmosphere, mainly due to the radiative impact of the CO2 increase. Model simulations with and without coupled chemistry show that the ozone feedback reduces the temperature response by up to 40%. Further analyses show that the ozone changes are caused primarily by the temperature dependency of the reaction O+O2+M-&gt;O3+M. The impact of changes in the surface climate on the middle atmosphere is generally small. In particular, no noticeable change in upward propagating planetary wave flux from the lower atmosphere is found. The temperature response in the polar regions is non-robust and thus, for the model used here, polar ozone loss does not appear to be sensitive to climate change in the lower atmosphere as has been suggested recently. The large interannual variability in the polar regions suggests that simulations longer than 30 years will be necessary for further analysis of the effects in this region. The thesis also addresses the long-standing dilemma that models tend to underestimate the ozone concentration at altitudes 40-75 km, which has important implications for climate change studies in this region. A photochemical box model is used to examine the photochemical aspects of this problem. At 40-55 km, the model reproduces satellite observations to within 10%, thus showing a substantial reduction in the ozone deficit problem. At 60-75 km, however, the model underestimates the observations by up to 35%, suggesting a significant lack of understanding of the chemistry and radiation in this region.
134

Estimates of turbulent mixing in the seas off the Southwestern Taiwan from Lowered ADCP and CTD profiles

Liang, Jia-ruei 22 February 2010 (has links)
In this study, vertical profiles of velocity and hydrographic properties measured by the Lowered ADCP and CTD, respectively are used to calculate the vertical eddy diffusivity K based on small-scale turbulence theory. Two methods are used to estimate K, that is, the Thorpe scale analysis method (designated as Kz) and vertical wave number shear spectral method (designated as Ksh). Four different experiments with different flow conditions and bathymetry, i.e., internal tides, deep open-ocean, nonlinear internal waves and Kuroshio, are conducted and their K values are estimated and discussed. The internal tides at the mouth of Kao-Ping Submarine Canyon (KPSC) are observed during July and December (spring tide) of 2008. In each cruise the LADCP/CTD casts are repeated every two hours and last 27 and 40 hours, respectively. The results indicate the existence of strong, semi-diurnal internal tides with vertical displacement of 50~100 m and the nature of first baroclinic mode. Turbulent mixing during flood is significantly stronger than that during ebb. Note that in the winter experiments the Kz can reach 0.01 m2 s-1, which is even larger than the reported Kz values in other submarine canyons of the world, suggesting strong mixing processes are taking place in the KPSC. From the LADCP/CTD data of the joint hydrographic survey on May 2008 at SEATS station of the South China Sea, the estimated average values of Kz and Ksh in the upper 3000 m are about 3¡Ñ10-4 m2 s-1 and 1.8¡Ñ10-4 m2 s-1, respectively. The average value of Kz near the ocean bottom increases to 2.5¡Ñ10-3 m2 s-1. These estimated Kz are somewhat larger than the reported values in the open ocean. On the other hand, Kz values between 300 and 700 m deep are almost zero, indicating that turbulent mixing is inhibited in the stratified layer. Nonlinear internal waves are tracked in the South China Sea during May 2007. Our results show that after the internal solitons passed in the deep waters, the Kz profiles change significantly, surface mixing is weak, and Kz increases gradually from 400 m deep to the ocean bottom. In the shallow water region, shoaling effect of the nonlinear internal waves lead to enhanced energy dissipation and higher values of Kz, with the maximum value reaches 1 m2 s-1 near 180m depth. The flow structure of Kuroshio current between Taiwan and Lanyu is observed in October 2007. The results show that Kz in the surface layer is high (~10-2 m2 s-1), obviously due to strong Kuroshio flows there. At the 3000 m deep submarine trench near Lanyu, the Kz in the bottom layer is also very high (~ 1 m2 s-1 ), indicating that effective turbulent mixing in the bottom layer is mainly due to topography, which has similar level as the nonlinear internal waves.
135

The extractable power from tidal streams, including a case study for Haida Gwaii

Blanchfield, Justin 07 January 2008 (has links)
Interest is growing worldwide among utility companies and governments of maritime countries in assessing the power potential of tidal streams. While the latest assessment for Canadian coastlines estimates a resource of approximately 42 GW, these results are based on the average kinetic energy flux through the channel. It has been shown, however, that this method cannot be used to obtain the maximum extractable power for electricity generation. This work presents an updated theory for the extractable power from a channel linking a bay to the open ocean. A mathematical model is developed for one-dimensional, non-steady flow through a channel of varying cross-section. Flow acceleration, bottom drag, and exit separation effects are included in the momentum balance. The model is applied to Masset Sound and Masset Inlet in Haida Gwaii, a remote island region, to determine the extractable power and its associated impacts to the tidal amplitude and volume flow rate through the channel.
136

Modelling hydrodynamic processes within Pumicestone Passage, Northern Moreton Bay, Queensland

Larsen, Genevieve Ruth January 2007 (has links)
Estuaries can be considered as vital natural resources and are unique ecosystems at the interface between terrestrial and marine environments. The increase of population density centred on these coastal features and associated anthropogenic activities such as trade, industry, agriculture and recreation can adversely affect these sensitive environments. The Pumicestone Passage, located in northern Moreton Bay, Australia, is one such estuarine environment where there are concerns about degradation of water quality resulting from rapid land use change. These changes are both immediate to the Passage and within its wider catchment. Of notable concern are the outbreaks of Lyngbya (a toxic blue-green algae) in the Passage itself and near its interface with Deception Bay to the south. Other factors of concern are increased suspended and dissolved loads, and maintenance of ecosystem integrity. In this study, numerical modelling, graphical methods and water surface elevation and current velocity parameter calculations are used to describe hydrological processes in the Pumicestone Passage. A hydrodynamic model is developed using the modelling software SMS and RMA2 as a foundation for future hydrodynamic and water quality modelling. In addition, observed data are used to interpret general hydrodynamic behaviour in the passage, and determine various parameters for use in model development and calibration. Tidal prediction is also discussed and used for model calibration. To support the modelling and for preliminary interpretation of hydrodynamic processes within the Passage, measurements were made in the field of (a) water surface elevation variation at 17 sites; (b) tidal current velocities in four of the tributary creeks and at the northern boundary; (c) volumetric flow rates at two cross-sections within the Passage; and (d) cross-sectional bathymetry at sites where tidal current velocities were measured in the creeks. In general, examination of the observational data reveals a number of important processes in the Pumicestone Passage. Almost all sites within Pumicestone Passage and its tributaries are flood dominant indicating that tidal storage and bottom friction effects are significant. Mesotidal ranges occur at sites close to the southern boundary of the passage, however, bottom friction greatly reduces the tidal response at the remaining sites which results in microtidal ranges. The influence of both the southern and northern tides can be seen in the deformation of tidal waveforms in the central passage. Extensive intertidal areas at and inside the northern inlet to the Passage markedly reduce tidal ranges in the northern estuary and its tributary creeks. Issues involved in hydrodynamic model development and performance are discussed. Overall, model results for the southern estuary have satisfactory correlation with observed data whereas model results for the northern estuary are less satisfactory. In addition, water surface elevation variation model results are generally more accurate than tidal current velocity model results. Reasons for the differences between model and observed values are considered and possible solutions given. Factors discussed relate to boundary condition locations, resolution of bathymetric and geographical data, mesh development methods and parameter assignment.
137

Dynamics of the Antarctic mesosphere and lower thermosphere / by A. Phillips

Phillips, A (Andre) January 1989 (has links)
Copies of author's previously published articles inserted / Bibliography: leaves 219-226 / xvi, 22l leaves, [5] leaves of plates : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Mawson Institute for Antarctic Research, 1990
138

Modelling tides in the Persian Gulf using dynamic nesting / Hashem Saberi Najafi.

Najafi, Hashem Saberi January 1997 (has links)
Errata pasted onto front end paper. / Bibliography: leaves 131-136. / v, 136 leaves : ill., maps (one col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The hydrodynamics of the Persian Gulf waters are of great importance because of oil transport activities and consequential oil spills. This thesis developed and applied a new technique for improving mathematical models to examine tidal movement in the Gulf, especially around the Iranian coast. Three different numerical tidal models, namely a uniform grid Cartesian model, a uniform grid spherical model and a spherical model containing dynamically nested regions with finer spatial and temporal grids were examined, with results compared with Admiralty chart 5081 and tidal constants computed from records from tidal stations. Results from the dynamically nested model better matched recorded values. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1998?
139

Use of time series, barometric and tidal analyses to conceptualize and model flow in an underground mine : the Corning mine complex, Ohio /

Sahu, Parameswar. January 2004 (has links)
Thesis (M.S.)--Ohio University, August, 2004. / Includes bibliographical references (p. 141-148)
140

Computation of tidal hydraulics and water quality using the Characteristic Galerkin method /

Chau, Kwok-wing. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1995. / Includes bibliographical references (leaves 123-126).

Page generated in 0.0324 seconds