• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 8
  • Tagged with
  • 62
  • 58
  • 57
  • 41
  • 40
  • 34
  • 33
  • 29
  • 27
  • 20
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Taxi demand prediction using deep learning and crowd insights / Prognos av taxiefterfrågan med hjälp av djupinlärning och folkströmsdata

Jolérus, Henrik January 2024 (has links)
Real-time prediction of taxi demand in a discrete geographical space is useful as it can minimise service disequilibrium by informing idle drivers of the imbalance, incentivising them to reduce it. This, in turn, can lead to improved efficiency, more stimulating work conditions, and a better customer experience. This study aims to investigate the possibility of utilising an artificial neural network model to make such a prediction for Stockholm. The model was trained on historical demand data and - uniquely - crowd flow data from a cellular provider (aggregated and anonymised). Results showed that the final model could generate very helpful predictions (only off by less than 1 booking on average). External factors - including crowd flow data - had a minor positive impact on performance, but limitations regarding the setup of the zones lead to the study being unable to make a definitive conclusion about whether crowd flow data is effective in improving taxi demand predictors or not. / Prognos av taxiefterfrågan i ett diskret geografiskt utrymme är användbart då det kan minimera obalans mellan utbud och efterfrågan genom att informera lediga taxiförare om obalansen och därmed utjämna den. Detta kan i sin tur leda till förbättrad effektivitet, mer stimulerande arbetsförhållanden och en bättre kundupplevelse. Denna studie ämnar att undersöka möjligheten att använda artificiella neurala nätverk för att göra en sådan prognos för Stockholm. Modellen tränades på historisk data om efterfrågan och - unikt för studien - folkströmsdata (aggregerad och anonymiserad) från en mobiloperatör. Resultaten visade att den slutgiltiga modellen kunde generera användbara prognoser (med ett genomsnittligt prognosfel med mindre än 1 bil per tidsenhet). Externa faktorer – inklusive folkströmsdata – hade en märkbar positiv inverkan på prestandan, men begränsningar rörande framställningen av zonerna ledde till att studien inte kunde dra en definitiv slutsats om huruvida folkströmsdata är effektiva för att förbättra prognoser för taxiefterfrågan eller ej.
62

A deep learning based anomaly detection pipeline for battery fleets

Khongbantabam, Nabakumar Singh January 2021 (has links)
This thesis proposes a deep learning anomaly detection pipeline to detect possible anomalies during the operation of a fleet of batteries and presents its development and evaluation. The pipeline employs sensors that connect to each battery in the fleet to remotely collect real-time measurements of their operating characteristics, such as voltage, current, and temperature. The deep learning based time-series anomaly detection model was developed using Variational Autoencoder (VAE) architecture that utilizes either Long Short-Term Memory (LSTM) or, its cousin, Gated Recurrent Unit (GRU) as the encoder and the decoder networks (LSTMVAE and GRUVAE). Both variants were evaluated against three well-known conventional anomaly detection algorithms Isolation Nearest Neighbour (iNNE), Isolation Forest (iForest), and kth Nearest Neighbour (k-NN) algorithms. All five models were trained using two variations in the training dataset (full-year dataset and partial recent dataset), producing a total of 10 different model variants. The models were trained using the unsupervised method and the results were evaluated using a test dataset consisting of a few known anomaly days in the past operation of the customer’s battery fleet. The results demonstrated that k-NN and GRUVAE performed close to each other, outperforming the rest of the models with a notable margin. LSTMVAE and iForest performed moderately, while the iNNE and iForest variant trained with the full dataset, performed the worst in the evaluation. A general observation also reveals that limiting the training dataset to only a recent period produces better results nearly consistently across all models. / Detta examensarbete föreslår en pipeline för djupinlärning av avvikelser för att upptäcka möjliga anomalier under driften av en flotta av batterier och presenterar dess utveckling och utvärdering. Rörledningen använder sensorer som ansluter till varje batteri i flottan för att på distans samla in realtidsmätningar av deras driftsegenskaper, såsom spänning, ström och temperatur. Den djupinlärningsbaserade tidsserieanomalidetekteringsmodellen utvecklades med VAE-arkitektur som använder antingen LSTM eller, dess kusin, GRU som kodare och avkodarnätverk (LSTMVAE och GRU) VAE). Båda varianterna utvärderades mot tre välkända konventionella anomalidetekteringsalgoritmer -iNNE, iForest och k-NN algoritmer. Alla fem modellerna tränades med hjälp av två varianter av träningsdatauppsättningen (helårsdatauppsättning och delvis färsk datauppsättning), vilket producerade totalt 10 olika modellvarianter. Modellerna tränades med den oövervakade metoden och resultaten utvärderades med hjälp av en testdatauppsättning bestående av några kända anomalidagar under tidigare drift av kundens batteriflotta. Resultaten visade att k-NN och GRUVAE presterade nära varandra och överträffade resten av modellerna med en anmärkningsvärd marginal. LSTMVAE och iForest presterade måttligt, medan varianten iNNE och iForest tränade med hela datasetet presterade sämst i utvärderingen. En allmän observation avslöjar också att en begränsning av träningsdatauppsättningen till endast en ny period ger bättre resultat nästan konsekvent över alla modeller.

Page generated in 0.0387 seconds