• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 1
  • Tagged with
  • 24
  • 24
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cohomology and K-theory of aperiodic tilings

Savinien, Jean P.X. January 2008 (has links)
Thesis (Ph.D.)--Mathematics, Georgia Institute of Technology, 2008. / Committee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
22

Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos / New identities involving Fibonacci, Lucas and Jacobsthal numbers using tilings

Spreafico, Elen Viviani Pereira, 1986- 11 November 2014 (has links)
Orientador: José Plínio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:14:38Z (GMT). No. of bitstreams: 1 Spreafico_ElenVivianiPereira_D.pdf: 1192138 bytes, checksum: 2b12cd351b94a0f2f7ec24fc172305c9 (MD5) Previous issue date: 2014 / Resumo: Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de elementos em conjuntos de ladrilhamentos com restrições. Na primeira parte do trabalho utilizamos os ladrilhamentos para demonstrar algumas identidades da teoria das partições, dentre elas, o Teorema dos Números Triangulares e o Teorema q-análogo da Série q-Binomial. Na segunda parte do trabalho apresentamos interpretações combinatórias, via ladrilhamento, para algumas identidades envolvendo os números de Jacobsthal e os números generalizados de Jacobsthal . Na terceira parte do trabalho são dadas novas identidades envolvendo os números q-análogos de Jacobsthal e encontramos generalizações para essas novas identidades. Por fim, definimos duas novas sequências: números de Fibonacci generalizados e números de Lucas generalizados e, utilizando ladrilhamentos, estabelecemos e demonstramos novas identidades envolvendo esses números / Abstract: In this work we present combinatorial proofs by making use of tilings. In the first part we use tilings to prove some identities on Partitions Theory, including Triangular Numbers' Theorem and q-analogue of q-Binomial Theorem. In the second part we present combinatorial interpretations, using tilings, for some identities involving Jacobsthal numbers and generalized Jacobsthal numbers. Next we find new identities involving an q-analogue of Jacobsthal numbers and generalizations for these new identities. Finally, we define two new sequences: generalized Fibonacci numbers and generalized Lucas numbers, and using tilings, we prove new identities involving these numbers / Doutorado / Matematica Aplicada / Doutora em Matemática Aplicada
23

Análise dos emparelhamentos de arestas de polígonos hiperbólicos para a construção de constelações de sinais geometricamente uniformes / Analysis of the pairing up of hyperbolical polygon sides for the construction of sign constellation geometrical uniform

Alves, Alessandro Ferreira 19 August 2018 (has links)
Orientador: Reginaldo Palazzo Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T09:31:01Z (GMT). No. of bitstreams: 1 Alves_AlessandroFerreira_D.pdf: 1080224 bytes, checksum: 0748952c3176e9548151bec7e6d9c71d (MD5) Previous issue date: 2011 / Resumo: Para projetarmos um sistema de comunicação digital em espaços hiperbólicos é necessário estabelecer um procedimento sistemático de construção de reticulados como elemento base para a construção de constelações de sinais. De outra forma, em codificação de canal é de fundamental importância a caracterização das estruturas algébrica e geométrica associadas a canais discretos sem memória. Neste trabalho, apresentamos a caracterização geométrica de superfícies a partir dos possíveis emparelhamentos das arestas do polígono fundamental hiperbólico com 3 ? n ? 8 lados associado 'a superfície. Esse tratamento geométrico apresenta propriedades importantes na determinação dos reticulados hiperbólicos a serem utilizados no processo de construção de constelações de sinais, a partir de grupos fuchsianos aritméticos e da superfície de Riemann associada. Além disso, apresentamos como exemplo o desenvolvimento algébrico para a determinação dos geradores do grupo fuchsiano 'gama'8 associado ao polígono hiperbólico 'P IND. 8' / Abstract: In order to design a digital communication system in hyperbolic spaces is necessary to establish a systematic procedure of constructing lattices as the basic element for the construction of the signal constellations. On the other hand, in channel coding is of fundamental importance to characterize the geometric and algebraic structures associated with discrete memoryless channels. In this work, we present a geometric characterization of surfaces from the edges of the possible pairings of fundamental hyperbolic polygon with 3 ? n ? 8 sides associated with the surface. This treatment has geometric properties important in determining the hyperbolic lattices to be used in the construction of sets of signals derived from arithmetic Fuchsian groups and the associated Riemann surface / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
24

Cohomology and K-theory of aperiodic tilings

Savinien, Jean P.X. 19 May 2008 (has links)
We study the K-theory and cohomology of spaces of aperiodic and repetitive tilings with finite local complexity. Given such a tiling, we build a spectral sequence converging to its K-theory and define a new cohomology (PV cohomology) that appears naturally in the second page of this spectral sequence. This spectral sequence can be seen as a generalization of the Leray-Serre spectral sequence and the PV cohomology generalizes the cohomology of the base space of a Serre fibration with local coefficients in the K-theory of its fiber. We prove that the PV cohomology of such a tiling is isomorphic to the Cech cohomology of its hull. We give examples of explicit calculations of PV cohomology for a class of 1-dimensional tilings (obtained by cut-and-projection of a 2-dimensional lattice). We also study the groupoid of the transversal of the hull of such tilings and show that they can be recovered: 1) from inverse limit of simpler groupoids (which are quotients of free categories generated by finite graphs), and 2) from an inverse semi group that arises from PV cohomology. The underslying Delone set of punctures of such tilings modelizes the atomics positions in an aperiodic solid at zero temperature. We also present a study of (classical and harmonic) vibrational waves of low energy on such solids (acoustic phonons). We establish that the energy functional (the "matrix of spring constants" which describes the vibrations of the atoms around their equilibrium positions) behaves like a Laplacian at low energy.

Page generated in 0.0918 seconds