Spelling suggestions: "subject:"markpositionsinformation"" "subject:"positionsinformation""
1 |
COMBINING TECHNOLOGIES TO FOSTER IMPROVED TSPI ACCURACY AND INCREASE SHARING OF THE FREQUENCY SPECTRUMSwitzer, Earl R., Wrin, John, Huynh, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The loss of radio frequency (RF) spectrum for use in testing has steadily increased the likelihood that users of the few remaining frequencies available to test ranges will experience scheduling conflicts and interference with nontest users. A gradual increase in the base of test customers engaged in scientific, military, and commercial R&D, point toward a near term situation in which more test customers will be competing for fewer frequencies. The test ranges, often operating in close geographical proximity with other communications-intensive functions as well as with each other, will also encounter increasing out-of-band and adjacent-channel interference. This projected growth of R&Drelated testing constrained to operate in a diminished RF spectrum (and a more confined test space), will undoubtedly stimulate the development of new products that make more efficient use of the RF spectrum. This paper describes one such innovative approach to spectrum sharing. The authors assess the operational need for an affordable miniaturized avionics instrument package based on a C-band radar transponder integrated with a Global Positioning System/Inertial Measurement Unit (GPS/IMU). The proposed approach would make use of frequencies already allocated for use by existing C-band aeronautical transponders. It would augment the format of the transponder output data to include the vehicle position obtained from an onboard GPS/IMU. Existing range instrumentation radars, such as the venerable AN/FPS-16, could be modified with lowcost upgrade kits to provide uniformly higher accuracy over the entire transponder coverage range.
|
2 |
Edwards Digital Switch System OverviewSwitzer, Earl R., Straehley, Erwin H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / The Edwards Digital Switch (EDS) is a digital communication system that provides advanced voice networking capabilities to the Edwards Test Range. The EDS is a member of a new family of all-digital switching systems that internally handle data in digital form. To accommodate analog voice and data circuits, conversions between analog and digital formats occur at the system interfaces. The EDS consists of six groups of configuration items: System-level control and monitoring is centralized in the Control and Display Subsystem. Workstations provide subsystem-level control and monitoring. The Central Switching Subsystem, as the primary interface with the range environment, provides system connectivity to radios, telephone circuits, and communications links to other facilities. It integrates the EDS with links to the Control Room Switching Subsystems. Each Control Room Switching Subsystem connects individual user stations within a Mission Control Room or other localized area. The user equipment element consists of a Subscriber Terminal Unit, Channel Expander, and interface panels for headsets, foot switches, and speakers. The Remote Radio Control Unit optimizes usage of available frequencies, allowing control of tunable radios from the Control and Display Subsystem. *The original name, Edwards Communication Switching System (ECSS) was changed to Edwards Digital Switch (EDS) in 1990. The Site Selection Unit facilitates the handover of voice communications between receiver sites when a long-range test is monitored. The system architecture is based on a central system-level control element, a central switch, multiple subsystem-level control elements, multiple subsystem switches, and end-equipment items that are interconnected through the switch network. The EDS combines multiple voice communications applications in a single system. The system is being expanded to integrate voice and data switching. Its major function is support of multiparty networked voice communications within Mission Control Rooms and between other test participants. Other voice functions are an intercom capability including both Direct Access (hot line) and Indirect Access (dial-up), subscriber loop connections to the base-level telephone exchange, and the Public Switched Network System. Digital interfaces allow integration of ciphertext data and Time Space Position Information data switching functions. A system based on the EDS design has also been installed by the Air Force at Eglin AFB. Engineering studies for systems that make use of the EDS design are currently underway by the Navy at China Lake and the Army at White Sands Missile Range. The EDS project office has actively pursued promising program management concepts such as: specifying nondevelopmental items, requiring industry standard interconnectivity and interoperability, and using a multiyear fixed-price requirements-type contract to encourage multiservice participation.
|
3 |
TELEMETRY GROUND STATION CONFIGURATION FOR THE JOINT ADVANCED MISSILE INSTRUMENTATION (JAMI) TIME SPACE POSITION INFORMATION (TSPI) UNIT (JTU)Meyer, Steven J. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Joint Advance Missile Instrumentation (JAMI) program has developed a Time Space Position Information (TSPI) unit (JTU). The JTU employs a novel use of GPS technology and inertial measurement units (IMU) to provide a real time trajectory for high dynamic missile systems. The GPS system can function during high g maneuvers that an air-to-air missile might encounter. The IMU is decoupled from the GPS sensor. The IMU data is a secondary navigation source for the JTU and will provide platform attitude. The GPS data and IMU data are sent to the ground in a telemetry packet called TUMS (TSPI Unit Message Structure). The TUMS packet is sent to a computer that hosts the JAMI Data Processing (JDP) software, which performs a Kalmam filter on the GPS and IMU data to provide a real-time TSPI solution to the range displays. This paper focuses on the equipment and software needed at a telemetry ground station to display the real time TPSI solution on the range displays. It includes an overview of the system data flow. This overview should help a potential user of the system understand what is involved in running the JAMI system. The post mission tools to provide an accurate trajectory and end-game scoring will not be discussed in this paper.
|
4 |
The Development of a Flight Test Real Time GPS Navigation Tool (GNAV)Leite, Nelson Paiva Oliveira, Rocha, Israel Cordeiro, Walter, Fernando, Hemerly, Elder Moreira 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / The real time acquisition and monitoring of the aircraft trajectory parameters is essential for the safety of the flight tests campaigns held by most of the tests centers. Nowadays the us age of an airborne GPS receiver as the main sensor for these parameters has become the preferred solution for the Flight Tests Instrumentation (FTI) systems. The main problem arises when it is required a high accuracy for these measurements (e.g. air data calibration) where the solution is achieved through differential GPS techniques. The integration of this solution requires the acquisition and the correlation of the pseudorange and phase measurements for all GPS satellites in view observed by both base and rover GPS receivers. To avoid the usage of an additional uplink for the GPS differential corrections (i.e. from the base receiver to the rover), it was developed a novel solution where the GPS observables acquired by the rover receiver are merged into the FTI PCM data stream and processed in the Telemetry ground station by a Real Time GPS Navigation (GNAV) tool together with the GPS observables acquired by the base receiver. The GNAV development is divided into several phases where the accuracy for the trajectory parameters and the complexity of the solution increases. The prototype system was built and evaluated against the post-mission Ashtech PNAV® tool and the initial tests results show a satisfactory performance for the GNAV. The tests profiles are fully compliant with the Federal Aviation Administration (FAA) Advisory Circular (AC) 25-7A.
|
5 |
GPS Receiver Testing on the Supersonic Naval Ordnance Research Track (SNORT)Meyer, Steven J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / There is an interest in using Global Positioning System (GPS) receivers to find: Time Space Position Information (TSPI), miss distances between a missile and target, and using the data real time as an independent tracking aid for range safety. Ashtech, Inc. has several standalone GPS receivers they believe can work at high g levels. This paper investigates how the Ashtech GPS receivers work under high g loading in one axis. The telemetry system used to collect data from the receivers and the reconstruction of the data will also be discussed. The test was done at SNORT (Supersonic Naval Ordnance Research Track) located at NAWS, China Lake, CA. The g level obtained was about +23 g’s with a deceleration of -15 g’s. The velocity reached was about Mach 2.0. A summary of the errors is included.
|
6 |
Distributed Interactive Simulation: The Answer to Interoperable Test and Training InstrumentationKassan, Mark W. 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / This paper discusses Global Positioning System (GPS) Range Applications Joint Program Office (RAJPO) efforts to foster interoperability between airborne instrumentation, virtual simulators, and constructive simulations using Distributed Interactive Simulation (DIS). In the past, the testing and training communities developed separate airborne instrumentation systems primarily because available technology couldn't encompass both communities' requirements. As budgets get smaller, as requirements merge, and as technology advances, the separate systems can be used interoperably and possibly merged to meet common requirements. Using DIS to bridge the gap between the RAJPO test instrumentation system and the Air Combat Maneuvering Instrumentation (ACMI) training systems provides a defacto system-level interoperable interface while giving both communities the added benefits of interaction with the modeling and simulation world. The RAJPO leads the test community in using DIS. RAJPO instrumentation has already supported training exercises such as Roving Sands 95, Warfighter 95, and Combat Synthetic Test, Training, and Assessment Range (STTAR) and major tests such as the Joint Advanced Distributed Simulation (JADS) Joint Test and Evaluation (JT&E) program. Future efforts may include support of Warrior Flag 97 and upgrading the Nellis No-Drop Bomb Scoring Ranges. These exercises, combining the use of DIS and RAJPO instrumentation to date, demonstrate how a single airborne system can be used successfully to support both test and training requirements. The Air Combat Training System (ACTS) Program plans to build interoperability through DIS into existing and future ACMI systems. The RAJPO is committed to fostering interoperable airborne instrumentation systems as well as interfaces to virtual and constructive systems in the modeling and simulation world. This interoperability will provide a highly realistic combat training and test synthetic environment enhancing the military's ability to train its warfighters and test its advanced weapon systems.
|
7 |
Field Programmable Gate Array Application for Decoding IRIG-B Time CodeBrown, Jarrod P. 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / A field programmable gate array (FPGA) is used to decode Inter-Range Instrumentation Group (IRIG) time code for a PC-based Time-Space-Position Information (TSPI) acquisition. The FPGA architecture can latch time via an external event trigger or a programmable periodic internal event. By syncing time with an external IRIG Group Type B (IRIG-B) signal and using an 8 megahertz (MHz) internal clock, captured time has 125 nanosecond (ns) precision. A Range Instrumentation Control System (RICS) application utilizing the FPGA design to capture IRIG time is presented and test results show matching time accuracy when compared to commercial IRIG time capture hardware components.
|
8 |
TRANSPORTABLE RANGE AUGMENTATION AND CONTROL SYSTEMS FOR MULTIPLE SHOT ENGAGEMENTSGlenn, Tom, Chavez, Tomas, Toole, Michael T., Markwardt, Jack 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Ballistic Missile Defense Organization (BMDO) is developing new Theater
Missile Defense (TMD) weapon systems to defend against the rapidly expanding
ballistic missile threat. The tactical ballistic missile threats include systems with range
capabilities greater than 1000 kilometers. The development and testing of systems
such as the Patriot Advanced Capability 3 (PAC-3), the Theater High Altitude Area
Defense (THAAD), Navy Area Defense, and the System Integration Tests (SIT) to
address the interoperability of this family of systems, will require the development of
the Transportable Range Augmentation and Control System for Multiple Shot
Engagements (TRACS - MSE). Congress has mandated that these systems be tested in
multiple simultaneous engagements. These systems will be tested at several ranges to
meet all the developmental and operational testers' needs. Potential range locations
include White Sands Missile Range (WSMR), Kwajalein Missile Range (KMR), the
Pacific Missile Range Facility (PMRF) and the Gulf Range at Eglin Air Force Base.
Due to the long distances separating the target launch site and the interceptor site, the
TRACS - MSE will be required at multiple sites for each range used. To be cost
effective, transportable systems should be developed to augment existing capabilities.
Advances in Global Positioning System (GPS) technology and high data rate receivers
make telemetry based solutions attractive. This article will address the requirements
for range safety, for Time, Space, Position Information (TSPI) collection and
processing requirements to support a TRACS - MSE capability.
|
9 |
TELEMETRY CHALLENGES FOR BALLISTIC MISSILE TESTING IN THE CENTRAL PACIFICMarkwardt, Jack, LaPoint, Steve 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile
Defense (TMD) and National Missile Defense (NMD) weapon systems to defend against
the expanding ballistic missile threat. In the arms control arena, theater ballistic missile
threats have been defined to include systems with reentry velocities up to five kilometers
per second and strategic ballistic missile threats have reentry velocities that exceed five
kilometers per second. The development and testing of TMD systems such as the Army
Theater High Altitude Area Defense (THAAD) and the Navy Area Theater Ballistic
Missile Defense (TBMD) Lower Tier, and NMD systems such as the Army
Exoatmospheric Kill Vehicle and the Army Ground-Based Radar, pose exceptional
challenges that stem from extreme acquisition range and high telemetry data transfer rates.
Potential Central Pacific range locations include U.S. Army Kwajalien Atoll/Kwajalein
Missile Range (USAKA/KMR) and the Pacific Missile Range Facility (PMRF) with target
launches from Vandenberg Air Force Base, Wake Island, Aur Atoll, Johnston Island, and,
possibly, an airborne platform. Safety considerations for remote target launches dictate
utilization of high-data-rate, on-board instrumentation; technical performance measurement
dictates transmission of focal plane array data; and operational requirements dictate
intercepts at exoatmospheric altitudes and long slant ranges. The high gain, high data rate,
telemetry acquisition requirements, coupled with loss of the upper S-band spectrum, may
require innovative approaches to minimize electronic noise, maximize telemetry system
gain, and fully utilize the limited S-band telemetry spectrum. The paper will address the
emerging requirements and will explore the telemetry design trade space.
|
10 |
Space Tracking Systems/ Options StudyGrelck, John, Ehrsam, Eldon, Means, James A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / This paper presents the findings of the Space Tracking Systems/Options Study (STS/OS) and indicates its impact on the telemetering community. The STS/OS was commissioned by Air Force Test & Evaluation (AF/TE) to develop a long range plan (vision and roadmap) for the AF Test & Evaluation (T&E) community to ensure affordable capabilities (telemetry, tracking and commanding) for the future (2003-2008). The study was conducted by the Air Force Materiel Command (AFMC), Space & Missile Systems Center (SMC), Detachment 9, at Vandenberg AFB (VAFB), with support from the primary AFMC T&E centers, the Air Force Operational Test & Evaluation Command (AFOTEC), and the Air Force Space Command (AFSPC). Both "open air" aeronautical and astronautical test needs were considered. The study solicited requirements for existing and future programs, extrapolated existing and planned test capabilities out into the future, then compared the two to identify future shortfalls in capabilities and specific actions that are necessary to insure that the future program needs can be met. Three critical types of testing were identified that cannot be satisfied with existing or planned instrumentation. These are: large area testing (LAT), over the horizon testing (OTH), and space weapons testing (SWT). A major deficiency was also uncovered in end game scoring for air and space intercepts, where inadequate capability exists to perform the required vector miss-distance measurement. This paper is important to the telemetering community because it identifies the Global Positioning System (GPS) as the primary time space position information (TSPI) system for all future open air testing. GPS provides a passive capability that permits each vehicle to determine its own precise TSPI. Means must be provided, however, for the vehicle to relay its position to the appropriate range control center. The paper shows that the problems with down linking telemetry, aircraft buss data, digital audio, digital video, and TSPI collectively represent the need for a very capable datalink. Likewise, the need to uplink commands, synthetic targets, synthetic backgrounds, and target control information also represents the need for a very capable datalink. With its extensive expertise in RF linkages, the telemetering community is ideally suited to address this need for a robust datalink for the future of T&E.
|
Page generated in 0.1153 seconds