• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time-based All-Digital Technique for Analog Built-in Self Test

Vasudevamurthy, Rajath January 2013 (has links) (PDF)
A scheme for Built-in-Self-Test (BIST) of analog signals with minimal area overhead, for measuring on-chip voltages in an all-digital manner is presented in this thesis. With technology scaling, the inverter switching times are becoming shorter thus leading to better resolution of edges in time. This time resolution is observed to be superior to voltage resolution in the face of reducing supply voltage and increasing variations as physical dimensions shrink. In this thesis, a new method of observability of analog signals is proposed, which is digital-friendly and scalable to future deep sub-micron (DSM) processes. The low-bandwidth analog test voltage is captured as the delay between a pair of clock signals. The delay thus setup is measured digitally in accordance with the desired resolution. Such an approach lends itself easily to distributed manner, where the routing of analog signals over long paths is minimized. A small piece of circuitry, called sampling head (SpH) placed near each test voltage, acts as a transducer converting the test voltage to a delay between a pair of low-frequency clocks. A probe clock and a sampling clock is routed serially to the sampling heads placed at the nodes of analog test voltages. This sampling head, present at each test node consists of a pair of delay cells and a pair of flip-flops, giving rise to as many sub-sampled signal pairs as the number of nodes. To measure a certain analog voltage, the corresponding sub-sampled signal pair is fed to a Delay Measurement Unit (DMU) to measure the skew between this pair. The concept is validated by designing a test chip in UMC 130 nm CMOS process. Sub-mV accuracy for static signals is demonstrated for a measurement time of few milliseconds and ENOB of 5.29 is demonstrated for low bandwidth signals in the absence of sample-and-hold circuitry. The sampling clock is derived from the probe clock using a PLL and the design equations are worked out for optimal performance. To validate the concept, the duty-cycle of the probe clock, whose ON-time is modulated by a sine wave, is measured by the same DMU. Measurement results from FPGA implementation confirm 9 bits of resolution.
2

A digital integer-N PLL architecture using a pulse-shrinking TDC for mmWave applications. / En digital integer-N PLL arkitektur baserad på en pulskrypmande TDC för milimetervågsapplikationer.

Richter, Simon January 2023 (has links)
With the move of the broadband cellular network towards 5G taking off and the preparatory work on 6G and beyond starting, the need for low-complexity, low-power, and high-performance frequency synthesis using Phase-Locked Loop (PLL)s increases. As we get deeper into the mm-wave frequencies and push towards frequencies in the order of 50-70 GHz design challenges with existing PLL architectures, such as limited technology scaling and limited in-band noise performance become more apparent. Other designs have tried overcoming these problems, for example by using single-bit phase detection at the cost of increased complexity when trying to control the bandwidth, or designing the loop with lower bandwidth to suppress in-band noise at the cost of requiring a lower noise and thus more power hungry oscillator. This thesis proposes a new Phase-locked loop architecture implemented in a 22nm node to combat these issues, utilizing a Pulse-Shrinking Time-To-Digital Converter (PS-TDC) offering sub-pico-second resolution with minimal power consumption in lock. The results found in this thesis have shown the viability of such a design, offering good in-band performance, allowing for wide bandwidth, and the use of a cheaper low-power Digital-Controlled Oscillator (DCO). The PS-TDC architecture combined with control logic implemented in this project can drastically decrease power consumption in lock while being able to compensate for process variations to optimize jitter performance. Additionally, by utilizing a Phase-Frequency Detector (PFD) and gear-shifting logic it has been shown that robust and fast locking can be achieved. / Med övergången till 5G i mobila bredbandsnätverk och förberedelserna för 6G på gång ökar behovet av lågkomplexa, lågeffekts- och högpresterande frekvenssyntes. När vi beger oss djupare in i millimetervågsfrekvenserna och strävar efter frekvenser uppemot 50-70 GHz blir designutmaningar med befintliga faslåsta loopar, såsom begränsad teknologiskalning och dålig prestanda för inband-brus, alltmer tydliga. Andra designer har försökt att övervinna dessa problem genom att till exempel använda enbitars fasdetektion till priset av ökad komplexitet vid styrning av systemets bandbredd, eller genom att designa loopen med lägre bandbredd för att vidare dämpa inband-brus, vilket kommer till priset av en oscillator med lägre brus och därmed högre effektförbrukning. Denna avhandling föreslår en ny arkitektur för faslåsta loopar för att överkomma dessa problem genom att använda en pulskrympande tids-till-digital omvandlare som erbjuder sub-pikosekunds upplösning med minimal effektförbrukning när frekvensen är låst. Resultaten som presenteras i denna avhandling har visat att en sådan design är möjlig, med god in-band prestanda, möjlighet till hög bandbredd och därmed användning av en billigare lågeffekt DCO. Den pulsskalande TDC-arkitekturen i kombination med kontrolllogik implementerad i detta projekt kan dramatiskt minska effektförbrukningen när frekvensen är låst, samtidigt som den kan kompensera för processvariationer för att optimera jitterprestanda. Sist har det visats att en robust och snabb låsning av frekvensen kan uppnås genom att använda en PFD.

Page generated in 0.0583 seconds