Spelling suggestions: "subject:"casebased catalysts"" "subject:"34d.based catalysts""
1 |
Investigação da eletrocatálise de interconversão do par dióxido de carbono/íons formato para aplicação em ciclos de estocagem de hidrogênio / Electrocatalysis Investigation of Carbon Dioxide / Formate Ions Interconversion for Application in Hydrogen Storage CyclesMoraes, Ricardo Sgarbi de 17 February 2016 (has links)
A crescente emissão do CO2 para a atmosfera, causada pela matriz energética dependente dos combustíveis fósseis tem gerado a necessidade de sistemas que o utilizem como matéria-prima para a produção ou armazenamento de energia. Em vista disso, este trabalho teve como objetivo o estudo do ciclo de estocagem de hidrogênio baseado em etapas eletrocatalíticas da eletro-redução e eletro-oxidação do par CO2/HCOO-. Para o processo de eletro-redução, foram utilizados eletrocatalisadores suportados em pó de carbono formados à base de estanho (Sn/C) e de estanho modificado com cobalto (Co-Sn/C), cobre (Cu-Sn/C) e paládio (Sn-Pd/C). Os materiais foram sintetizados pelo método de impregnação seguido por tratamento térmico e caracterizados fisicamente por Difratometria de Raios X (DRX) e Espectroscopia por energia Dispersiva de Raios X (EDX). Os testes eletroquímicos foram realizados via cronoamperometria (eletrólise) e a quantificação dos íons formato por Cromatografia Líquida de Alta Eficiência (CLAE) e voltametria cíclica (VC). Os resultados obtidos mostraram que os materiais nanoestruturados sintetizados apresentaram estruturas cristalinas, sendo que o estanho apresentou-se na forma de SnO2, mas sofrendo eletro-redução em condições in situ para SnO ou SnOH. Os resultados eletroquímicos mostraram que o Sn/C eletrocatalisa a redução do CO2 para HCOO-, sendo que a quantificação por VC utilizando eletrodos de paládio e platina indicaram correntes de pico crescentes até o potencial de eletrólise de -1,6 V vs. Ag/AgCl/Cl-. Ademais, experimentos de eletrólise evidenciaram o aumento linear da concentração de HCOO- após 6 horas de polarização, indicando alta estabilidade do eletrocatalisador de Sn/C. A atividade eletrocatalítica dos eletrocatalisadores à base de estanho frente a redução de CO2 para HCOO- foi atribuída a dois aspectos: (i) o estanho favorece a adsorção ou interação do CO2 através dos átomos de oxigênio, possibilitando a transferência de prótons e elétrons sem a quebra da ligação C-O e/ou; (ii) a presença de espécies SnOH na superfície, mesmo em baixos potenciais, permite a interação com o CO2 e leva à formação de intermediários adsorvidos reativos, que sofrem a adição de prótons e elétrons para a formação de HCOO-. A eficiência máxima de corrente faradaica para a formação de HCOO- foi de aproximadamente 7 % tendo a reação de desprendimento de hidrogênio (HER) como rota paralela. A investigação da influência da natureza do eletrocatalisador mostrou inatividade do material de Co-Sn/C, mas com aumento da atividade de Cu-Sn/C para a eletro-redução de CO2, quando comparado com Sn/C puro. / With the increase CO2 emissions into atmosphere caused mainly by the energy dependence on fossil fuels, systems for generation or storage of clean energy has been studied to couple CO2 as feedstock. This work proposed a hydrogen storage cycle based on electrocatalytic steps of pair CO2/HCOO-, such electroreduction and electrooxidation. For electroreduction process were used carbon-supported tin-based electrocatalysts (Sn/C) and tin modified with cobalt (Co-Sn/C), copper (Cu-Sn/C) and palladium (Sn-Pd/C). The materials were synthesized by impregnation method followed of thermal treatment, and X Ray Diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) techniques were used for physical characterization. Electrochemical tests were performed via chronoamperometry (electrolysis) and the quantification of formate ions by High Performance Liquid Chromatography (HPLC) and cyclic voltammetry (CV). Results of synthesized nanostructured materials showed crystalline structures with tin as SnO2 species, but tin oxide suffering electroreduction to SnO or SnOH in situ conditions. Electrochemical results presented that the Sn/C catalyzes the CO2 reduction to HCOO-, with an increase peak current until electrolysis potential of -1.6 V vs. Ag/AgCl/Cl- quantified by CV on palladium and platinum electrodes. Moreover, electrolysis measurements demonstrated the linear increase of HCOO- concentration after polarization for 6 hours, which indicates the high stability of Sn/C electrocatalyst. The electrocatalytic activity of tin-based electrocatalysts for CO2 reduction into HCOO- was attributed to two aspects: (i) tin favors the adsorption or interaction of CO2 through oxygen atoms, which enables the proton and electron transfer without breaking C-O bond and/or; (ii) the presence on surface of SnOH species allows the interaction with CO2 even at low potential, and leads to the formation of reactive intermediates adsorbed that undergo addition of protons and electrons to form HCOO-. Maximum Faradaic efficiency for HCOO- formation was near 7% with Hydrogen Evolution Reaction (HER) as parallel route. Investigation of the influence of the electrocatalyst nature showed inactivity of CO-Sn/C material, but the activity of CO2 electroreduction increased on Cu-Sn/C material as compared to Sn/C pure.
|
2 |
Investigação da eletrocatálise de interconversão do par dióxido de carbono/íons formato para aplicação em ciclos de estocagem de hidrogênio / Electrocatalysis Investigation of Carbon Dioxide / Formate Ions Interconversion for Application in Hydrogen Storage CyclesRicardo Sgarbi de Moraes 17 February 2016 (has links)
A crescente emissão do CO2 para a atmosfera, causada pela matriz energética dependente dos combustíveis fósseis tem gerado a necessidade de sistemas que o utilizem como matéria-prima para a produção ou armazenamento de energia. Em vista disso, este trabalho teve como objetivo o estudo do ciclo de estocagem de hidrogênio baseado em etapas eletrocatalíticas da eletro-redução e eletro-oxidação do par CO2/HCOO-. Para o processo de eletro-redução, foram utilizados eletrocatalisadores suportados em pó de carbono formados à base de estanho (Sn/C) e de estanho modificado com cobalto (Co-Sn/C), cobre (Cu-Sn/C) e paládio (Sn-Pd/C). Os materiais foram sintetizados pelo método de impregnação seguido por tratamento térmico e caracterizados fisicamente por Difratometria de Raios X (DRX) e Espectroscopia por energia Dispersiva de Raios X (EDX). Os testes eletroquímicos foram realizados via cronoamperometria (eletrólise) e a quantificação dos íons formato por Cromatografia Líquida de Alta Eficiência (CLAE) e voltametria cíclica (VC). Os resultados obtidos mostraram que os materiais nanoestruturados sintetizados apresentaram estruturas cristalinas, sendo que o estanho apresentou-se na forma de SnO2, mas sofrendo eletro-redução em condições in situ para SnO ou SnOH. Os resultados eletroquímicos mostraram que o Sn/C eletrocatalisa a redução do CO2 para HCOO-, sendo que a quantificação por VC utilizando eletrodos de paládio e platina indicaram correntes de pico crescentes até o potencial de eletrólise de -1,6 V vs. Ag/AgCl/Cl-. Ademais, experimentos de eletrólise evidenciaram o aumento linear da concentração de HCOO- após 6 horas de polarização, indicando alta estabilidade do eletrocatalisador de Sn/C. A atividade eletrocatalítica dos eletrocatalisadores à base de estanho frente a redução de CO2 para HCOO- foi atribuída a dois aspectos: (i) o estanho favorece a adsorção ou interação do CO2 através dos átomos de oxigênio, possibilitando a transferência de prótons e elétrons sem a quebra da ligação C-O e/ou; (ii) a presença de espécies SnOH na superfície, mesmo em baixos potenciais, permite a interação com o CO2 e leva à formação de intermediários adsorvidos reativos, que sofrem a adição de prótons e elétrons para a formação de HCOO-. A eficiência máxima de corrente faradaica para a formação de HCOO- foi de aproximadamente 7 % tendo a reação de desprendimento de hidrogênio (HER) como rota paralela. A investigação da influência da natureza do eletrocatalisador mostrou inatividade do material de Co-Sn/C, mas com aumento da atividade de Cu-Sn/C para a eletro-redução de CO2, quando comparado com Sn/C puro. / With the increase CO2 emissions into atmosphere caused mainly by the energy dependence on fossil fuels, systems for generation or storage of clean energy has been studied to couple CO2 as feedstock. This work proposed a hydrogen storage cycle based on electrocatalytic steps of pair CO2/HCOO-, such electroreduction and electrooxidation. For electroreduction process were used carbon-supported tin-based electrocatalysts (Sn/C) and tin modified with cobalt (Co-Sn/C), copper (Cu-Sn/C) and palladium (Sn-Pd/C). The materials were synthesized by impregnation method followed of thermal treatment, and X Ray Diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) techniques were used for physical characterization. Electrochemical tests were performed via chronoamperometry (electrolysis) and the quantification of formate ions by High Performance Liquid Chromatography (HPLC) and cyclic voltammetry (CV). Results of synthesized nanostructured materials showed crystalline structures with tin as SnO2 species, but tin oxide suffering electroreduction to SnO or SnOH in situ conditions. Electrochemical results presented that the Sn/C catalyzes the CO2 reduction to HCOO-, with an increase peak current until electrolysis potential of -1.6 V vs. Ag/AgCl/Cl- quantified by CV on palladium and platinum electrodes. Moreover, electrolysis measurements demonstrated the linear increase of HCOO- concentration after polarization for 6 hours, which indicates the high stability of Sn/C electrocatalyst. The electrocatalytic activity of tin-based electrocatalysts for CO2 reduction into HCOO- was attributed to two aspects: (i) tin favors the adsorption or interaction of CO2 through oxygen atoms, which enables the proton and electron transfer without breaking C-O bond and/or; (ii) the presence on surface of SnOH species allows the interaction with CO2 even at low potential, and leads to the formation of reactive intermediates adsorbed that undergo addition of protons and electrons to form HCOO-. Maximum Faradaic efficiency for HCOO- formation was near 7% with Hydrogen Evolution Reaction (HER) as parallel route. Investigation of the influence of the electrocatalyst nature showed inactivity of CO-Sn/C material, but the activity of CO2 electroreduction increased on Cu-Sn/C material as compared to Sn/C pure.
|
Page generated in 0.0708 seconds