• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 679
  • 123
  • 72
  • 67
  • 67
  • 56
  • 46
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1493
  • 1493
  • 325
  • 323
  • 277
  • 238
  • 218
  • 161
  • 134
  • 128
  • 127
  • 115
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Design of a transillumination optical tomography system to image tissue-engineered blood vessels

Gladish, Jimmy January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 100-104). Also available on the Internet.
462

Control of epithelial differentiation by cell-instructive scaffolds /

Beckstead, Benjamin L. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 129-143).
463

Stem cell-based adipose tissue engineering

Neubauer, Markus. January 1900 (has links) (PDF)
Regensburg, University, Diss., 2004.
464

Regulatory mechanisms in the chondrogenesis of mesenchymal progenitors the roles of cyclic tensile loading and cell-matrix interactions /

Connelly, John Thomas. January 2007 (has links)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Barbara D. Boyan, Committee Member ; Ravi Bellamkonda, Committee Member ; Joseph Le Doux, Committee Member ; Andres J. Garcia, Committee Member ; Marc E. Levenston, Committee Chair.
465

Isolation and characterization of human periodontal ligament stem cells

Gay, Isabel C. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Oct. 30, 2007). Includes bibliographical references (p. 61-66).
466

Design of a noninvasive system for the evaluation of collagen scaffolds using MRI

Howes, Stuart C. January 2007 (has links)
Thesis (M.S.) -- Worcester Polytechnic Institute. / Keywords: histology; implant; biomaterials; MRI. Includes bibliographical references (p.80-86).
467

Assessment of electrospinning as an in-house fabrication technique for blood vessel mimic cellular scaffolding a thesis /

James, Colby M. Cardinal, Kristen O'Halloran. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Mode of access: Internet. Title from PDF title page; viewed on November 19, 2009. Major professor: Dr. Kristen O'Halloran Cardinal. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Biomedical Engineering." "August 2009." Includes bibliographical references (p. 143-158).
468

Cellular and Biomaterial Engineering for Orthopaedic Regenerative Medicine

Brunger, Jonathan M. January 2015 (has links)
<p>The ends of long bones that articulate with respect to one another are lined with a crucial connective tissue called articular cartilage. This tissue plays an essential biomechanical function in synovial joints, as it serves to both dissipate load and lubricate articulating surfaces. Osteoarthritis is a painful and debilitating disease that drives the deterioration of articular cartilage. Like many chronic diseases, pro-inflammatory cytokines feature prominently in the onset and progression of osteoarthritis. Because cartilage lacks physiologic features critical for regeneration and self-repair, the development of effective strategies to create functional cartilage tissue substitutes remains a priority for the fields of tissue engineering and regenerative medicine. The overall objectives of this dissertation are to (1) develop a bioactive scaffold capable of mediating cell differentiation and formation of extracellular matrix that recapitulates native cartilage tissue and (2) to produce stem cells specifically tailored at the scale of the genome with the ability to resist inflammatory cues that normally lead to degeneration and pain. </p><p>Engineered replacements for musculoskeletal tissues generally require extensive ex vivo manipulation of stem cells to achieve controlled differentiation and phenotypic stability. By immobilizing lentivirus driving the expression of transforming growth factor-β3 to a highly structured, three dimensionally woven tissue engineering scaffold, we developed a technique for producing cell-instructive scaffolds that control human mesenchymal stem cell differentiation and possess biomechanical properties approximating those of native tissues. This work represents an important advance, as it establishes a method for generating constructs capable of restoring biological and mechanical function that may circumvent the need for ex vivo conditioning of engineered tissue substitutes.</p><p>Any functional cartilage tissue substitute must tolerate the inflammation intrinsic to an arthritic joint. Recently emerging tools from synthetic biology and genome engineering facilitate an unprecedented ability to modify how cells respond to their microenvironments. We exploited these developments to engineer cells that can evade signaling of the pro-inflammatory cytokine interleukin-1 (IL-1). Our study provides proof-of-principle evidence that cartilage derived from such engineered stem cells are resistant to IL-1-mediated degradation. </p><p>Extending on this work, we developed a synthetic biology strategy to further customize stem cells to combat inflammatory cues. We commandeered the highly responsive endogenous locus of the chemokine (C-C motif) ligand 2 gene in pluripotent stem cells to impart self-regulated, feedback-controlled production of biologic therapy. We demonstrated that repurposing of degradative signaling pathways induced by IL-1 and tumor necrosis factor toward transient production of cytokine antagonists enabled engineered cartilage tissue to withstand the action of inflammatory cytokines and to serve as a cell-based, auto-regulated drug delivery system.</p><p>In this work, we combine principles from synthetic biology, gene therapy, and functional tissue engineering to develop methods for generating constructs with biomimetic molecular and mechanical features of articular cartilage while precisely defining how cells respond to dysfunction in the body’s finely-tuned inflammatory systems. Moreover, our strategy for customizing intrinsic cellular signaling pathways in therapeutic stem cell populations opens innovative possibilities for controlled drug delivery to native tissues, which may provide safer and more effective treatments applicable to a wide variety of chronic diseases and may transform the landscape of regenerative medicine.</p> / Dissertation
469

Microfluidics-generated Double Emulsion Platform for High-Throughput Screening and Multicellular Spheroid Production with Controllable Microenvironment

Chan, Hon Fai January 2015 (has links)
<p>High-throughput processing technologies hold critical position in biomedical research. These include screening of cellular response based on phenotypic difference and production of homogeneous chemicals and biologicals for therapeutic applications. The rapid development of microfluidics technology has provided an efficient, controllable, economical and automatable processing platform for various applications. In particular, emulsion droplet gains a lot of attention due to its uniformity and ease of isolation, but the application of water-in-oil (W/O) single emulsion is hampered by the presence of the oil phase which is incompatible with aqueous phase manipulation and the difficulty in modifying the droplet environment.</p><p>This thesis presents the development of a double emulsion (DE) droplet platform in microfluidics and two applications: (1) high-throughput screening of synthetic gene and (2) production of multicellular spheroids with adjustable microenvironment for controlling stem cell differentiation and liver tissue engineering. Monodisperse DE droplets with controllable size and selective permeability across the oil shell were generated via two microfluidics devices after optimization of device design and flow rates. </p><p>Next, bacterial cells bearing synthetic genes constructed from an inkjet oligonucleotide synthesizer were encapsulated as single cells in DE droplets. Enrichment of fluorescent signals (~100 times) from the cells allowed quantification and selection of functionally-correct genes before and after error correction scheme was employed. Permeation of Isopropyl β-D-1-thiogalactopyranoside (IPTG) molecules from the external phase triggered target gene expression of the pET vector. Fluorescent signals from at least ~100 bacteria per droplet generated clearly distinguishable fluorescent signals that enabled droplets sorting through fluorescence-activated cell sorting (FACS) technique.</p><p>In addition, DE droplets promoted rapid aggregation of mammalian cells into single spheroid in 150 min. Size-tunable human mesenchymal stem cells (hMSC) spheroids could be extracted from the droplets and exhibited better differentiation potential than cells cultured in monolayer. The droplet environment could be altered by loading matrix molecules in it to create spheroid-encapsulated microgel. As an example, hMSC spheroid was encapsulated in alginate or alginate-RGD microgel and enhanced osteogenic differentiation was found in the latter case.</p><p>Lastly, the capability of forming spheroids in DE droplet was applied in liver tissue engineering, where single or co-culture hepatocyte spheroids were efficiently produced and encapsulated in microgel. The use of alginate-collagen microgel significantly improved the long-term function of the spheroid, in a manner similar to forming co-culture spheroids of hepatocytes and endothelial progenitor cells at a 5 to 1 ratio. The hepatocyte spheroid encapsulated in microgel could be useful for developing bioartificial liver or drug testing platform or applied directly for hepatocyte transplantation.</p> / Dissertation
470

Developing sustained dual-drug therapy for tendon sports injuries

Lui, Yuan Siang January 2016 (has links)
Tendon plays an important role in regulating body locomotion and providing additional stability to the body. However, tendon is susceptible to injuries and the healing process could be devastating along with the several issues, namely adhesion formations, slow healing and failure at fixation sites, which have deferred the success of proper tendon healing via tendon tissue engineering. This dissertation thus aims to create a sustained dual-drug therapy to address these issues. For adhesion formation, naproxen sodium (NPS) has been shown to be able to avoid this symptom through inhibiting inflammation process.

Page generated in 0.2042 seconds