• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 678
  • 123
  • 72
  • 67
  • 67
  • 56
  • 45
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1490
  • 1490
  • 324
  • 323
  • 277
  • 238
  • 218
  • 161
  • 133
  • 128
  • 126
  • 115
  • 115
  • 111
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína. / Production and characterization of electrospun polymeric-protein nanofiber scaffolds with different thicknesses.

Vanessa Tiemi Kimura 26 September 2017 (has links)
A engenharia tecidual visa repor, reparar ou ajudar a regenerar tecidos e órgãos danificados por meio da combinação de biomateriais, biomoléculas e células. Scaffolds de nanofibras biodegradáveis mimetizam a matriz extracelular natural fornecendo uma estrutura ideal para o crescimento celular. Blendas de policaprolactona (PCL) e gelatina são biodegradáveis e proporcionam uma combinação de boas propriedades mecânicas, do PCL, com a hidrofilicidade e caráter que promove a adesão celular, da gelatina. Neste contexto, o objetivo deste trabalho é avaliar a importância das diferentes espessuras de scaffolds eletrofiados em relação às suas propriedades principais. Quatro conjuntos de scaffolds de PCL/gelatina com diferentes espessuras foram produzidos sob as mesmas condições apenas aumentando o tempo de duração do processo de eletrofiação. Os resultados indicam que as espessuras aumentaram proporcionalmente ao tempo de eletrofiação, variando de 100 nm a 300 nm nos períodos de 1 a 3 horas, enquanto a densidade aparente e a porosidade mantiveram-se constantes. As micrografias das membranas revelaram fibras lisas com diâmetros maiores para os scaffolds de menor espessura, e fibras irregulares com diâmetros menores e regiões fundidas ou ligadas para os scaffolds de maior espessura. Além disso, o aumento da espessura melhorou a resistência mecânica e a molhabilidade dos scaffolds. A esterilização por peróxido de hidrogênio não modificou quimicamente a composição das membranas de PCL/gelatina, embora algumas amostras tenham se deformado. As membranas também apresentaram bons resultados de citotoxicidade, melhorando a viabilidade celular, apesar desses valores diminuírem minimamente para os scaffolds de maior espessura, provavelmente devido à maior quantidade de PCL. O teste de adesão não foi conclusivo e deverá ser repetido. / Tissue engineering aims to replace, repair, or helping regenerate damaged tissues and organs through the combination of biomaterials, biomolecules and cells. Biodegradable nanofibrous scaffolds mimic the natural extracellular matrix providing an ideal structure to cellular growth. Blends of polycaprolactone (PCL) and gelatin are biodegradable and provide a combination of good mechanical properties, from PCL, with the hydrophilicity and cell adhesion promoter character, from gelatin. The aim of this work was to evaluate the importance of the thickness of electrospun scaffolds on their key properties. Four sets of PCL/gelatin scaffolds with different thicknesses were produced under the same conditions by simply increasing the time length of electrospinning process. Results indicate that the thickness increases proportionally to the electrospinning time, varying from 100 nm to 300 nm in periods of 1 to 3 hours, while the apparent density and porosity remained constant. Micrographs from the nonwoven mats revealed smooth fibers with larger diameters in the thinner scaffold, and irregular fibers with smaller diameters and molten or bonded regions as the thickness increased. Furthermore, the increase of thickness improved mechanical resistance and wettability of the scaffolds. Plasma sterilization did not modify chemical composition of PCL/gelatin membranes, although some samples have been deformed. Membranes also presented good results for cytotoxicity, improving cell viability, despite these values decreased minimally to the thicker scaffolds, probably due to the higher amount of PCL. Adhesion test was not conclusive and might be repeat.
482

Estudo da desacetilação da quitosana e obtenção de suas nanopartículas para aplicação em Engenharia de tecidos. / Study of the deacetylation of chitosan and the obtaining of its nanoparticles for application in Tissue Engineering.

Juliana Rodrigues de Souza 07 August 2017 (has links)
Estima-se, que, no Brasil, ocorram cerca de um milhão de vítimas de queimaduras por ano, e mesmo com a dinâmica de inovações na área da saúde, a reparação deste tipo de lesão tecidual, permanece um grande desafio. Os queimados tendem a contrair infecções sistêmicas, as quais poderão levar a óbito, se não houver o tratamento adequado ao paciente. Desta forma, são necessários cuidados extremos nas etapas que envolvem este complexo reparo tissular. Diante das dificuldades na substituição ou regeneração de órgãos ou tecidos lesionados, surgiu um campo interdisciplinar chamado de engenharia de tecidos, com foco no estudo para o desenvolvimento de suportes tridimensionais, constituídos de materiais sintéticos ou naturais, onde são cultivadas células do próprio paciente, para posteriormente serem reinseridas reparando tecidos ou substituindo órgãos por inteiro. A quitosana é um dos biopolímeros mais utilizados hoje na área de engenharia de tecidos, devido a sua capacidade de agir de forma significativa nas três fases que envolvem a cicatrização de queimaduras, sendo elas: a fase inflamatória, a fase proliferativa e a fase reparadora, e por sua alta ação bacteriostática e fungistática. Diante das propriedades já existentes da quitosana, o objetivo desta pesquisa foi o estudo para intensificá-las, através do aumento do seu grau de desacetilação e modificando-a para uma escala nanométrica aumentando assim sua área superficial. Para isso, a quitosana foi submetida a meio altamente alcalino com variação de temperatura e variação do tempo de reação, utilizando a ferramenta estatística fatorial completo 23. Após a obtenção das amostras desacetiladas, foi verificado, através dos espectros obtidos por espectroscopia na região do infravermelho, que os maiores valores de grau de desacetilação ocorreram utilizando os níveis máximos em todos os fatores envolvidos na reação. Para analisar a cinética da reação e confirmar as informações obtidas do fatorial 23, foi feito um novo planejamento fatorial 22, fixando o tempo de seis horas de reação, e no decorrer deste tempo foram retiradas onze alíquotas, para análise de seus graus de desacetilação (GD). O padrão de resultados dos experimentos permitiu a aplicação de um modelo matemático que representou a realidade do que ocorreu durante a reação, sendo este o modelo do núcleo não reagido. Posteriormente, a quitosana com alto grau de desacetilação foi submetida ao método de ultrassom e pelas análises do diâmetro das partículas, potencial zeta e índice de polidispersão, foi possível verificar que a quitosana após ser submetida ao ultrassom e no pH adequado, foi possível atingir partículas em escala nanométrica. / It is estimated that in Brazil about one million burn victims occur per year, and even with the dynamics of innovations in the health area, the repair of this type of tissue injury, remains a great challenge. Burns tend to contract systemic infections, which can lead to death if the patient is not adequately treated. In this way, extreme care is required in the steps involved in this complex tissue repair. Faced with difficulties in the replacement or regeneration of injured organs or tissues, an interdisciplinary field called tissue engineering has emerged, focusing on the study for the development of three-dimensional supports, consisting of synthetic or natural materials, where the patient\'s own cells are cultured, subsequently reinserted by repairing tissues or replacing whole organs. Chitosan is one of the most widely used biopolymers nowadays in the field of tissue engineering, due to its capacity to act in a significant way in the three phases that involve the healing of burns, namely: inflammatory phase, proliferative phase and repair phase, and for its high bacteriostatic and fungiostatic action. In view of the existing properties of chitosan, the objective of this research was to intensify them by increasing its degree of deacetylation and modifying it to a gauge scale, thus increasing its surface area. For this, chitosan was submitted to a highly alkaline medium with temperature variation and reaction time variation, using the complete factorial statistical tool 23. After obtaining the deacetylated samples, it was verified by spectroscopy in the infrared region, that the highest values of deacetylation degree occurred after using the maximum levels in all factors involved in the reaction. In order to analyze the kinetics of the reaction and to confirm the information obtained from factorial 23, a new 22 factorial design was made, fixing the time of six hours of reaction, during which eleven aliquots were taken for analysis of their degree of desacetylation (GD). The pattern of results of the experiments allowed the application of a mathematical model that represented the reality of what occurred during the reaction, being this the model of the shrinking core model. Subsequently, the chitosan with a high degree of deacetylation was subjected to the ultrasound method and the analysis of particle diameter, zeta potential and polydispersion index allowed to verify that chitosan after being submitted to ultrasound at the appropriate pH achieved particles in nanometer scale.
483

Arcabouços de poli(L-co-D,L ácido láctico-co-trimetileno carbonato) para o crescimento de células osteoblásticas (SaOS-2) / Poly(L-co-D,L lactic acid-co-trimethylene carbonate) scaffolds for growth of osteoblastic cells (SaOS-2)

Messias, André Dutra 18 August 2018 (has links)
Orientador: Eliana Aparecida de Rezende Duek / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-18T20:14:55Z (GMT). No. of bitstreams: 1 Messias_AndreDutra_M.pdf: 3979732 bytes, checksum: a037cfe8915578970a94fa33568fbd91 (MD5) Previous issue date: 2011 / Resumo: Polímeros a base de ácido láctico são largamente investigados como materiais para a engenharia tecidual. A capacidade de sofrer degradação hidrolítica, de ser reabsorvido pelo organismo e sua biocompatibilidade inerente, tornam-nos uma excelente escolha para tal aplicação. Entretanto, características como baixa flexibilidade e pequena capacidade de alongamento antes da fratura, tendem a limitar esses dispositivos em determinadas aplicações, o que pode ser melhorado com a adição de compostos que agem como plastificantes, como é o caso do trimetileno carbonato (TMC), quando presente na cadeia polimérica do copolímero de ácido láctico (PLDLA). O objetivo deste trabalho foi sintetizar e caracterizar o terpolímero de L-ácido láctico, D,L-ácido láctico e TMC, e obtenção de arcabouços para avaliação da viabilidade celular e atividade de células osteoblásticas (SaOS-2), em 1, 3, 7, 14 e 21 dias de cultivo, visando aplicação na engenharia tecidual óssea. Dessa forma, sintetizou-se o terpolímero a partir de 20 e 30% de TMC, através da polimerização em massa dos monômeros, como confirmado por RMN de 1H e 13C, utilizando como catalisador o Sn(Oct)2. A análise de GPC mostrou que os terpolímeros sintetizados apresentaram massa molar média (Mw) na ordem de 105 g/mol, característica importante que permite a obtenção de propriedades mecânicas mínimas para uma aplicação estrutural. A investigação térmica do PLDLA-TMC demonstrou uma discreta diminuição da Tg em relação ao PLDLA. Além disso, a degradação do terpolímero em etapa única iniciou-se em torno dos 290 ºC, como visto pelo TGA. O ensaio de MTT mostrou que o arcabouço de PLDLA-TMC permitiu um aumento na viabilidade celular, atingindo valores máximos em 7 dias, e mantendo-se estável até 14 dias de cultivo. Similarmente, a atividade de fosfatase alcalina foi crescente até 7 dias de cultivo, importante indicador da atividade osteoblástica. Esses resultados mostram que é possível produzir com sucesso o terpolímero PLDLA-TMC. Além disso, os arcabouços produzidos apresentaram características importantes considerando a aplicação para engenharia tecidual óssea / Abstract: Lactic acid based polymers are widely investigated as materials for tissue engineering. The ability to allow hydrolytic degradation, to be reabsorbed by the body and its inherent biocompatibility, make them an excellent choice for this application. However, characteristics such as low flexibility and low elongation ability before the fracture tend to limit these devices in particular applications, which can be enhanced with the addition of compounds that act as plasticizers, as the trimethylene carbonate (TMC) when present in the polymer chain of the copolymer of lactic acid (PLDLA). The objective of this work was to synthesize and characterize the terpolymer of L-lactic acid, D,L-lactic acid and TMC, obtain evaluation of scaffolds for cell viability and alkaline phosphatase activity of osteoblastic cells (SaOS-2) in 1, 3, 7, 14 and 21 days of culture, aiming its application in bone tissue engineering. Thus, the terpolymer is synthesized from 20 and 30% of TMC, by bulk polymerization of monomers, confirmed by 1H and 13C RMN. The GPC analysis showed that the copolymers synthesized showed average molar mass (Mw) in the order of 105 g/mol, an important feature that allows the attainment of minimum mechanical properties necessary for structural applications. The thermal investigation of thermal PLDLA-TMC showed a slight decrease of Tg comparing to PLDLA. Furthermore, the one step terpolymer degradation was initiated around 290 ºC, as shown by TGA. The MTT assay showed that the PLDLA-TMC scaffolds enabled an increase in cell viability, reaching a peak in 7 days, and remained stable until 14 days of cultivation. Similarly, the alkaline phosphatase activity was increased up to 7 days of culture, an important indicator of osteoblastic activity. These results show that it was possible to successfully produce a terpolymer from L-lactic acid, D,L-lactic acid and trimethylene carbonate. In addition, the scaffolds exhibited important characteristics considering the application for bone tissue engineering / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
484

Cardiac stem cell therapy for heart failure

Hsiao, Lien-Cheng January 2012 (has links)
Cardiovascular disease is a leading cause of death worldwide and becomes increasingly prevalent in the elderly population. Independent of etiopathogenesis, heart failure (HF) is the final common stage of numerous heart diseases. Cardiac stem cell (CSC) therapy has emerged as a promising cell-based strategy for treatment of HF. However, cell replacement is not able to fully restore a structurally damaged myocardium in advanced and end-stage HF. The objective of this project was to test the following hypotheses: that a bioengineered heart extracellular matrix (ECM) with preserved intact geometric structure could be generated using decellularization by coronary perfusion; and that autologous CSCs, to repopulate this ECM, could be isolated and expanded from the adult heart, with the caveat that autologous CSCs are depleted and impaired by both aging and chronic dilated cardiomyopathy. This will help to develop a possible therapeutic approach for advanced HF, using a combination of CSCs and engineering technique. Resident CSCs were isolated from explant-derived cells (EDCs) and expanded into cardiosphere-derived cells (CDCs) via cardiosphere formation. The CDCs expressed CSC markers (c-kit and Sca-1), pluripotent markers (Oct3/4 and Sox2), and the cardiac lineage-committed marker (Nkx2.5), and showed clonal expansion, self-renewal, and cardiomyogenic potential in vitro. In tissue engineering experiments, CDCs survived and proliferated within biomaterial alginate scaffolds for up to 7 weeks. An engineered bioartificial ECM scaffold was successfully produced from a whole rat heart using retrograde coronary perfusion and possessed an intact 3D architecture with functionally perfusable vascular network. Compared with ventricles, cultures derived from atria produced significantly higher number of c-kit+ and Sca-1+ CSCs (c-kit: 13% vs. 3.4%; Sca-1: 82% vs. 53%, respectively) and exhibited greater clonogenic and proliferative capacity. CDCs could be grown from young and aged mice, but the yield of CSCs significantly declined with age, as did cell migration and differentiation potential. In comparison to wild-type mice, atrial-CDCs from dystrophic mice showed no significant differences in CSC subpopulations and characteristics, despite confirmation of cardiac dysfunction using MRI. In conclusion, CDCs could be considered to be a viable cell candidate for cardiac therapy and may be used to treat HF at various stages, in combination with myocardial tissue engineering.
485

Interakce buňek s biomateriály v tkáňovém inženýrství tvrdých a měkkých tkání / Cell-biomaterial interactions in hard and soft tissue engineering

Zárubová, Jana January 2016 (has links)
Tissue engineering is an interdisciplinary field which aims to create substitutes of damaged tissues by combining cells with biomaterials. Cells are extremely sensitive to their microenvironment and so the cell response to biomaterials can be regulated by different extrinsic stimuli and alterations of biomaterial properties. Successful implant integration into the tissue can therefore be promoted by appropriate surface roughness, chemical composition, adhesion ligand density, as well as the availability of growth factors. This thesis mainly focuses on the development of orthopedic replacements and the improvement of the currently used blood vessel prostheses. Through the study of cell-biomaterial interactions, it was demonstrated that superimposed topography with features ranging from the nano to micro scale promotes cell spreading, proliferation, and the metabolic activity of osteoblast-like cells. Moreover, when comparing the chemical composition of biomaterials for orthopedic implants, higher osteoblast densities were observed on composites with 5-15 vol. % of calcium phosphate nanoparticles, while concentrations of 25 vol. % did not support cell proliferation. Cell viability, however, was not affected. In vivo, a more intensive formation of new bone tissue, was found on samples containing...
486

The use of phosphorous containing polymers to mimic the action of bisphosphonate drugs in bone repair

Bassi, Anita Kaur January 2011 (has links)
Bone has the capacity to regenerate itself, however for challenging defects such as non-uniform factures, repair can be problematic. A similar challenge is presented in the repair of osteoporotic bone. Osteoporotic bone becomes increasingly porous and brittle and the risk of fracture is greatly increased. A drug mimic, poly(vinyl phosphonic acid – co – acrylic acid)(PVPA), has been incorporated into FDA approved poly(ε-caprolactone)(PCL), and aims to mimic the action of bisphosphonates to reduce the activity of osteoclasts. The PVPA polymer contains pendant phosphonic acid groups which are hypothesised to mimic the P-C-P backbone found in bisphosphonates. The PCL/PVPA scaffold has been found to have sufficient mechanical strength in order to be used as a bone void filler as well as providing a hydrophilic surface for superior cell attachment. The substrate has been found to significantly enhance the deposition of collagen, alkaline phosphatase activity and the expression of osteocalcin. Alizarin red staining revealed an increase in the rate of mineralisation in the presence of the drug mimic. The PCL/PVPA substrates have been suggested to induce osteoblast cells from a proliferative phase to a mineralisation stage. This is believed to be due to the presence of phosphorous within the scaffold which could lead to the critical concentration required for the initiation of mineralisation being reached more rapidly and effectively. The PVPA polymer has been found to mimic the action of bisphosphonates by inducing osteoclast apoptosis in vitro, and its actions of osteoclast apoptosis are comparable to that of Alendronate, a commonly administered bisphosphonate. A critical size defect model has demonstrated that the PVPA polymer has the ability to heal critical size defects; the healing potential was two fold greater than the control PCL substrate. Initial in vivo studies using a subcutaneous model demonstrated an improvement in mineralisation in the presence of PVPA. Untreated PCL/PVPA substrates displayed a high level of branched blood vessel formation, essential for healthy bone formation. However PVPA samples pre-treated with VEGF, hindered blood vessel formation and the infiltration of cells. This suggests that the PVPA alone is capable of inducing neovascularisation without the addition of VEGF. The findings suggest that the PCL/PVPA system could be used to treat challenging bone defects such as non-unions and osteoporotic fractures.
487

Regulation of Bone Marrow Stem Cells through Oscillatory Shear Stresses - A Heart Valve Tissue Engineering Perspective

Rath, Sasmita 20 March 2015 (has links)
Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.
488

Blood-Brain Barrier in vitro Model: A Tissue Engineering Approach and Validation

Zhang, Zhiqi 07 July 2010 (has links)
This dissertation evaluated the feasibility of using commercially available immortalized cell lines in building a tissue engineered in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Mouse endothelial cell line and rat astrocyte cell lines purchased from American Type Culture Collections (ATCC) were the building blocks of the co-culture model. An astrocyte derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel in vitro biomimetic basement membrane for the endothelial cells to form endothelial tight junctions. Trans-endothelial electrical resistance (TEER) and solute mass transport studies were engaged to quantitatively evaluate the tight junction formation on the in-vitro BBB models. Immuno-fluorescence microscopy and Western Blot analysis were used to qualitatively verify the in vitro expression of occludin, one of the earliest discovered tight junction proteins. Experimental data from a total of 12 experiments conclusively showed that the novel BBB in vitro co-culture model with the astrocyte derived aECM (CO+aECM) was promising in terms of establishing tight junction formation represented by TEER values, transport profiles and tight junction protein expression when compared with traditional co-culture (CO) model setups and endothelial cells cultured alone. Experimental data were also found to be comparable with several existing in vitro BBB models built from various methods. In vitro colorimetric sulforhodamine B (SRB) assay revealed that the co-cultured samples with aECM resulted in less cell loss on the basal sides of the insert membranes than that from traditional co-culture samples. The novel tissue engineering approach using immortalized cell lines with the addition of aECM was proven to be a relevant alternative to the traditional BBB in vitro modeling.
489

The influence of donor age and in vitro expansion on the proliferation and differentiation properties of donor-matched bone marrow and adipose-derived mesenchymal stem cells : implications for musculoskeletal tissue engineering

Burrow, Kimberley Louise January 2014 (has links)
Introduction: Mesenchymal stem cells (MSC) offer a novel cell therapy within tissue engineering and regenerative medicine (TERM)-based strategies, and the prospect of MSC therapies are widening since the discovery of MSCs within multiple locations of the body including bone marrow (BM-MSCs) and adipose tissue, (AD-MSCs). It is highly recognised that an organisms reparative and regenerative potential declines with advancing age, therefore aged patients are one of the primary target populations for TERM applications. Although information is available regarding the effects of patient age on the quality of human BM-MSCs, little and conflicting information currently exists for AD-MSCs. In addition, few studies have compared the quality of freshly isolated and expanded donor-matched BM and AD-MSCs to elucidate the more appropriate cell source. This study investigated the effect of donor age and in vitro ageing on functional behaviour (i.e. senescence state, population kinetics and differentiation potential) of donor-matched BM and AD-MSCs. Methods: The influence of donor age and in vitro ageing on mature (28-55 years) and elderly (75-86 years) donor-matched BM and AD-MSCs was assessed upon isolation (early life-span) and during extended (mid and late lifespan) timepoints through culture. During culture MSCs were characterised for cumulative population doublings (CPDs) and the expression of senescence associated marker genes, p16INK4A, p21 and p53, and transcription factor NANOG. At each lifespan telomere length was assessed along with differentiation efficiency along the osteogenic, adipogenic and chondrogenic lineages through lineage specific marker genes and histological staining. Results: Elderly BM and AD-MSCs displayed similar characteristics in terms of initial CPD number, p21, p53 and NANOG expression, telomere length and differentiation along osteogenic and adipogenic lineages. With increasing donor age there was a significant decline in p16INK4A expression within BM-MSCs, whilst expression of all chondrogenic markers significantly decreased within AD-MSCs. BM and AD-MSCs were comparable for the majority of outcome measures with the exception of chondrogenic differentiation which was superior with BM-MSCs in terms of COL2A1 expression and histological staining for proteoglycans. Donor age had a negative effect on BM-MSCs with long-term culture leading to a significantly longer PD time and decreased telomere lengths. Similar population kinetics was displayed between BM and AD-MSCs during long-term culture. Increasing culture time had effects on differentiation potential for both MSC sources with complete loss of osteogenic capacity and decreased adipogenic capacity; however chondrogenic capacity was only decreased within AD-MSCs. Differentiation potential after long-term culture between BM and AD-MSCs showed similar osteogenic and adipogenic ability yet superior chondrogenic ability was apparent within mature BM-MSCs compared to AD-MSCs, in terms of ECM deposition. Conclusions: In conclusion the source of MSCs for TERM will need to be considered depending upon the type of tissue regeneration required. The clinical outcome would be greater using MSCs during early stages of culture, as culture expansion has detrimental effects on functional properties of both BM and AD-MSCs.
490

Protein hydrogels as tissue engineering scaffolds

Haji Ruslan, Khairunnisa Nabilah January 2015 (has links)
Hydrogels aim to mimic the natural living environment by entrapping large amount of water or biological fluids in their polymeric network. There has been growing interest in the development of peptide and protein hydrogels, due to their improved biocompatibility, biodegradability and biological properties in comparison to purely synthetic polymer hydrogels. Under the appropriate conditions, biomacromolecular protein hydrogels can self-assemble into ordered meso- to macroscopic supramolecules with better resulting networks that promote tissue development. The work presented here mainly focuses on producing protein hydrogels with controlled physical properties useful for tissue regeneration process and drug delivery applications. Hen egg white lysozyme (HEWL) hydrogels were studied in the presence of water and different reducing agents forming three HEWL systems including HEWL/water, HEWL/DTT and HEWL/TCEP gels. Strong, self-supporting HEWL gels were successfully prepared in the range of pH 2 to 7, using a temperature of 85°C. At pH 2, the protein denaturation in water was relatively slow resulting in a high percentage of turn structure (~50%) that promotes HEWL gelation after 3 days of heating. No lysozyme gelation in water was observed at pH 3, 4 and 7 even after 21 days of heating. A small quantity of DTT (~20 mM) was added to encourage lysozyme unfolding and HEWL/DTT samples formed gels at higher pH including at physiological pH. The pH 2 HEWL/water gel was found to be stronger but more brittle than pH 7 HEWL/DTT gel. It was observed there were some irregularities in the distribution of pH 2 fibrils (~7µm in length) that form large pore sizes within the network. The pH 7 sample contained shorter and stiff fibrils with repetitive polygon-shaped mesh network. The use of TCEP, which is a stronger reductant than DTT, led to the formation of self-supporting HEWL gels between pH 3.5 and 5.5. The highest storage modulus was observed at pH 5, which is related to the high β-sheet content of the sample (~45%). In addition, a promising strategy has been devised to form thermoresponsive HEWL hydrogels by synthesising and incorporating a small fraction of lysozyme-PNIPAAm bioconjugates into the major protein matrix. Results show the thermoresponsive nature of PNIPAAm was conferred to HEWL protein that exhibits higher storage stability in response to changing temperature.

Page generated in 0.1127 seconds