• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dielectric Titanate Ceramics : Contributions From Uncommon Substituents And Microstructural Modifications

Jayanthi, S 10 1900 (has links)
This thesis deals with the investigations on the dielectric properties of polycrystalline ceramics having uncommon substitutions in barium titanate and other related phases of BaTiO3-CaTiO3, MgTiO3-CaTiO3 and MgTiO3-BaTiO3 systems. After presenting a brief introduction on the ceramic materials studied in terms of their crystal structures, electrical properties, nonstoichiometry and microstructural characteristics. The thesis describes the synthesis of the ceramics and the methodology of different techniques utilized in characterizing the samples. Barium calcium titanate was synthesized through novel wet chemical techniques and the dielectric properties of calcium substituted barium titanate do not reveal multi-site occupancy whereas they are predominantly influenced by the A/B cationic ratio. The role of transition metals of the 3d series from vanadium (Z=23) to zinc (Z=30) in modifying the crystallographic phase content, microstructure and the dielectric properties of BaTiO3 ceramics containing 10 at% impurities were studied. All the transition metals brought about the phase conversion to hexagonal BaTiO3, although no systematics could be arrived at relating the hexagonal content to the 3d electronic configuration of the impurities. The relaxor dielectrics arising from the titanate solid solution with uncommon substitution and its interconversion to normal ferroelectrics is studied. The effects of cationic substitutions of iron and niobium for titanium in BaTiO3 pervoskite lattice in crystal symmetry and dielectric properties were investigated. The above dielectric characteristics are comparable in a converse way to those of the well known Pb(Mg1/3Nb2/3)O3-PbTiO3 system wherein the relaxor behaviour occurs within the lower lead titanate compositional limits. The modification in -T characteristics of positive temperature coefficient in resistance (PTCR) by the addition of segregative additives such as B2O3, Al2O3 etc in BaTiO3 and its conversion to grain boundary layer capacitance is studied. The presence of Al-related hole centers at the grain boundary regions resulted in charge redistribution across the modified phase transition temperatures due to symmetry-related vibronic interactions, which result in broad PTCR characteristics extending to higher temperatures. The processing of high permittivity ceramics by the manipulation of microstructural features in semiconducting BaTiO3 is studied wherein the grain boundary layer effect superimposed with the contributions from the barrier layers formed during electroding related to microstructure is proposed to be responsible for the unusual high permittivity in semiconducting BaTiO3. The influence of Mg2+ as a substituent in modifying the crystallographic phase contents, microstructure and the dielectric properties of (Ba1-xMgx)TiO3 ceramics, (x ranging from zero to 1.0 ) is studied. The results point to the dual occupancy of Mg2+ both in A and B sublattice and the role of oxygen vacancy as well as (Ti3+ –VO) defects in stabilization of hexagonal phase to lower temperatures. The microwave dielectrics of the BaMg6Ti6O19 phase formed in the compositional range of x=0.4 to 0.7 was investigated for suitable application in microwave dielectrics. Extensive miscibility between the ilmenite-type MgTiO3 and perovskite-type CaTiO3 over a wide compositional range is brought about by the simultaneous equivalent substitution of Al3+ and La3+. The resulting Mg1-(x+y)CaxLay)(Ti1-yAly)O3 ceramics exhibit improved microwave dielectric properties by way of high permittivity, low TCK and high quality factor. The elemental distribution reveals the complexity in the Mg/Ca distribution and its correlation with the solid state miscibility as well as dielectric properties. Microwave dielectric property of Mg4Al2Ti9O25 which is detected as secondary phase is studied in detail.
2

Structural, Ferroelectric, Piezoelectric and Phase Transition Studies of Lead Free (Na0.5Bi0.5)TiO3 Based Ceramics

Garg, Rohini January 2013 (has links) (PDF)
Ferroelectric materials, especially the polycrystalline ceramics, are very promising material for a variety of applications such as high permittivity dielectrics, ferroelectric memories, piezoelectric sensors, piezoelectric/electrostrictive transducers, electrooptic devices and PTC thermistors. Among the ferroelectric based piezoelectric ceramics the lead–zirconate-titanate Pb(Zr1-xTix)O3 (PZT) have dominated transducer and actuator market due to its excellent piezoelectric and dielectric properties, high electromechanical coupling, large piezoelectric anisotropy, ease of processing and low cost. However, the toxicity of lead based compounds has raised serious environmental concerns and therefore has compelled the researchers to look for new lead free alternatives with good piezoelectric and ferroelectric properties. (Na0.5Bi0.5)TiO3 (NBT) and its solid solution is one of the leading lead free piezoceramic ceramics due to their interesting ferroelectric, piezoelectric, electromechanical and dielectric property. The parent compound NBT is a ferroelectric with a moderately high Curie temperature (~250 oC), large ferroelectric polarization (~40µC/cm2) polarization, promising piezoelectric properties with 0.08% strain and longitudinal piezoelectric coefficient (d33) ~ 80 pC/N. X-ray and neutron diffraction studies in the past have shown that NBT exhibits rhombohedral (R3c) at room temperature. Neutron diffraction studies have suggested that NBT undergo a gradual rhombohedral to tetragonal (P4bm) transformation in a temperature region 200-320 ºC. Though the structure and phase transition behavior of NBT has been extensively investigated for over six decades now, this subject has again become debatable in recent few years, with some group reporting formation of orthorhombic phase above room temperature and another group suggesting monoclinic distortion at room temperature using high resolution x-ray diffraction technique. Interestingly the intermediate orthorhombic instability, reported by electron diffraction studies, has never been captured by neutron diffraction method though neutron diffraction is an equally powerful tool for studying (oxygen) octahedral tilts in perovskites. Needless to mention, the understanding of the subtle structural distortions have great significance with regard to the determination of the structure-piezoelectric property correlations in NBT based piezoceramics. The present thesis deals with such subtle structural issues in great detail. The systems investigated in the thesis are Ca and Ba modified NBT. While the Ca modified system was chosen to understand the subtle orthorhombic instability that has been reported above room temperature (only) by detailed electron diffraction work, Ba-modified NBT is the most investigated among the NBT-derived piezoelectric material systems and this thesis attempts to address some of the very complex nature of the structure-piezoelectric property correlation of this system. The first chapter of the thesis provides a brief introduction to the field of ferroelectrics, perovskite structure and their phase transition. A brief exposure to the conventional lead based relaxor ferroelectric and piezoelectric material is provided. A detailed overview of the existing knowledge related to room temperature structure of NBT and its phase transition studies with temperature has been discussed in the later part of this chapter. The second chapter includes various the experimental techniques that have been employed to synthesis and characterize the specimens under investigation. The third chapter deals with the phase transition behaviour of Ca modified NBT as a function of composition and temperature in the dilute concentration region. This work was carried out with the view to obtain a better understanding and compliment the intrinsic high temperature orthorhombic instability in NBT reported by electron diffraction technique. Interestingly, inspite of the fact that neutron diffraction method is a very sensitive tool for investigating subtle change in the nature of octahedral tilt in oxide perovskites, the intermediate orthorhombic distortion proposed by the electron diffraction studies has so far never been captured in any of the neutron diffraction studies. In this work we have verified the genuineness of the intrinsic instability with regard to the non-polar orthorhombic structure using neutron powder diffraction by adopting a special strategy which helped in capturing the characteristic signatures (the superlattice reflections) of the orthorhombic phase in the neutron powder diffraction patterns. It was found that small fraction of Ca-substitution (8-10 mol %) was good enough to amplify the magnitude of the orthorhombic (Pbnm) distortion, without altering the sequence of the structural evolution with temperature of the parent compound (NBT) itself, and stabilizing it at the global length scale at lower temperatures than pure NBT. This chapter presents the innovative approach that was used to extract reliable information about the very complex phase transition behaviour, involving coexistence of the various similar looking but crystallographically different phases in different temperature regimes by Rietveld analysis of temperature dependent neutron powder diffraction pattern in conjunction with temperature dependent dielectric and ferroelectric characterization of the specimens. The detailed study revealed the following sequence of structural evolution with temperature: Cc+Pbnm →Pbnm + P4/mbm → P4/mbm →Pm3 m. The fourth chapter gives a detail account of the structure-property correlations and the phase transition behaviour of (1-x)(Na0.5Bi0.5)TiO3 – (x)BaTiO3 (0≤x≤0.10), the most important solid solution series with NBT as reported in the literature. The phase transformation behaviour of this system has been investigated as a function of composition (0<x≤0.10), temperature, electric field and mechanical-impact by Raman scattering, ferroelectric, piezoelectric measurements, x-ray and neutron powder diffraction methods. The structure of the morphotropic phase boundary (MPB) compositions of this system, which is interesting from the piezoelectric property point of view, has been under controversy for long. While some groups report the structure to be pseudocubic, other groups suggest it to be combination of rhombohedral and tetragonal. A perusal of the literature suggests that the reported nature and composition range of MPB is dependent on the method of synthesis and characterization technique used. In the present study, crystal structure of the NBT-BT solid solution has been investigated at the close interval near the MPB (0.05≤x≤0.10). Though x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for 0≤x≤0.05, (ii) “cubic-like” for 0.06≤x≤0.0675 and (iii) MPB like for 0.07≤x<0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubic like and the MPB compositions. Both the cubic like compositions and the MPB compositions exhibit comparatively large d33. In the later part of this chapter this apparent contradiction is resolved by the fact that the cubic like structure transforms irreversibly to MPB after electric poling, a procedure which involves applying high dc electric field (well above the coercive field) to the pellet before carrying out the piezoelectric measurements. The effect of electrical field and mechanical impact has been studied for all the three different composition range, and it was found that electric field and mechanical impact both led to irreversible phase transformation in the same direction, though the transformation with mechanical impact remains incomplete in comparison to electric field. The most pronounced effect was observed for the cubic like compositions 0.06≤x≤0.0675 – they undergo phase separation to rhombohedral and tetragonal phases by electrical and mechanical perturbations. In the non-perturbed state the cubic-like critical compositions mimics features of relaxor ferroelectrics and extremely short coherence length (~ 40-50 Å) of the out-of-phase octahedral tilts. In the poled state this coherence length grows considerably and the system behaves like a normal ferroelectric. This confirmed a strong coupling between the lattice, octahedral tilts and polarization degrees of freedom. Neutron diffraction study of compositions exhibiting cubic-like and the MPB like revealed that the traditional P4bm tetragonal structure model fails to account for the intensity of the superlattice reflections. Thus the tetragonal structure stabilized above room temperature in pure NBT is different from the tetragonal phase observed at room temperature in the NBT-BT system. The results of the effect of mechanical impact and electric field has also been reported in this chapter for the critical composition exhibiting MPB (x=0.07). A detailed structural analysis of the precritical compositions, x≤0.05, revealed coexistence of ferroelectric phases (Cc+R3c) in equilibrium state (annealed specimens). This transforms to single phase (R3c) state after poling. Thus though the precritical (x≤0.05) and critical compositions (0.06≤x<0.10) of NBT-BT exhibits coexistence of ferroelectric phases in the equilibrium state, the fact that the electric poling makes the specimen single phase, R3c, after poling for the precritical compositions and retains the two phase nature of the critical compositions makes the critical compositions exhibit considerably higher piezoelectric response than the precritical compositions. Chapter five is dedicated to phase transition behaviour of the post critical compositions of (1-x)(Na0.5Bi0.5)TiO3–(x)BaTiO3 (0.16≤x≤1) using temperature dependent XRD, dielectric and ferroelectric studies. Though structurally the entire composition range is tetragonal, several notable features were revealed during detailed examination of the structural and dielectric behaviour. This study is also important from the view point that pure BT is a major component of multilayer ceramic capacitors and that an increase in the Curie point would be a welcome step for better temperature stability of the device. NBT does this. The transition temperature increases from 120 ºC for pure BT to 275 ºC for x=0.30 along with simultaneous increase in c/a ratio from 1.009 (pure BT) to 1.02 (x=0.30). Detailed analysis of temperature and frequency dependent dielectric data revealed deviation from Curie-Weiss and suggests a gradual transformation to relaxor-ferroelectric state as the NBT concentration increases in BT. The measure of frequency dispersion ‘γ’ parameter was determined from modified Curie-Weiss law for various compositions in the system. The ferroelectric and piezoelectric properties have also been investigated in detail for this composition range and an attempt has been made to correlate the composition variation of these properties with their structural parameters. This chapter shows a systematic correlation between all physical quantities such as Curie point, piezoelectric coefficient, polarization and tetragonality as a function of composition.
3

Sensors Based On Semiconducting BaTiO3 And Its Solid Solutions Prepared Through Gel To Crystallite Conversions

Padmini, P 08 1900 (has links) (PDF)
No description available.
4

Investigations Into The Microstructure-Property Correlation In Doped And Undoped Giant Dielectric Constant Material CaCu3Ti4O12

Shri Prakash, B 10 1900 (has links)
High dielectric constant materials are of technological importance as they lead to the miniaturization of the electronic devices. In this context, the observation of anomalously high dielectric constant (>104) in the body-centered cubic perovskite-related (Space group Im3) material Calcium Copper Titanate ((CaCu3Ti4O12)(CCTO)) over wide frequency (100 Hz – 1MHz at RT) and temperature (100 – 600 K at 1 kHz ) ranges has attracted a great deal of attention. However, high dielectric constant in CCTO is not well understood yet, though internal barrier layer capacitor (IBLC) mechanism is widely been accepted. Therefore, the present work has been focused on the preparation and characterization of CCTO ceramic and to have an insight into the origin of high dielectric constant. Influence of calcination temperature, processing conditions, microstructure (and hence grain size), composition, doping etc on the electrical characteristics of CCTO ceramics were investigated. Electrical properties were found to be strongly dependent on these parameters. The dielectric constant in CCTO was observed to be reduced considerably on substituting La+3 on Ca+2 site. The formation temperature of CCTO was lowered substantially (when compared to conventional solid-state reaction route) by adopting molten-salt synthesis. The dielectric loss in CCTO was reduced by incorporating glassy phases at the grain boundary. Potential candidates for the practical applications such as charge storage devices, capacitors etc, with dielectric constant as high as 700 at 300 K was accomplished in a three-phase percolative composite fabricated by incorporating Aluminium particle into CCTO-epoxy composite. Polycrystalline CCTO thin films with dielectric constant as high as ~ 5000 (1 kHz and 400 K) were fabricated on Pt(111)/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. Effect of sintering conditions on the microstructural, ferroelectric and varistor properties of CCTO and LCTO ceramics belonging to the high and low dielectric constant members of ACu3M4O12 family of oxides were investigated in detail and are compared. Ferroelectric-like hysteresis loop (P vs E) and weak pyroelectricity were observed in CCTO and plausible mechanisms for this unusual phenomenon have been proposed.
5

Synthesis, Structure And Properties Of MPB Composition In PZT- Type Ceramics

Geetika, * 07 1900 (has links) (PDF)
The first chapter introduces the basic principles governing the phenomenon like ferroelectricity, piezoelectricity and pyroelectricity, which influences the material properties for its device applications. An effort is made to examine the present status of material issues, measurement techniques and applications pertaining to the lead based PZT type systems. This chapter also highlights the objectives and the scope of work. The second chapter deals with the various basic experimental techniques and principles adopted for the synthesis and characterizations of materials which include phase and quantitative analysis by X-ray diffraction, density measurements, microstructures by scanning electron microscopy, electrical properties such as dielectric permittivity, dielectric loss, and piezoelectricity by impedance analyzer and piezometer etc. The materials were synthesized via two step solid state reaction by adopting a low temperature calcinations route. Further, hot processing was employed for densification and better control of microstructure of the ceramics. In the third chapter PZT1-x –PZNx (x=0, 0.1, 0.2 & 0.3) compositions prepared by the single step low temperature calcination method have been described. It is seen that the pyrochlore free perovskite phase could be obtained up to x=0.2 compositions. The effect of additives like Li and Mn on the structure, sinterability, microstructure, density and dielectric properties has been investigated. The improvement in densification and ferroelectric properties were observed for Li addition favor tetragonal phase while Mn addition compositions were inclined to pseudocubic phase. Further, the addition of Mn led to the significant decrease in Tc than the parent compositions compared to Li added compositions. In the fourth chapter, the X-ray diffraction data on pbzrx Ti1-x O3 (PZT) for x=0.48 to 0.52 are presented. High resolution x-ray studies for composition x=0.5 show the MPB which consists of monoclinic Zr rich studies and tetragonal Ti rich phase at room temperature. The refined structural parameters for MPB compositions have been obtained using least square Rietveld refinement program, FULLPROF 2006. The evolutions of lattice parameters of the system were also studied with respect to the temperature. The phase transformation in the system has been analyzed by x-ray diffraction pattern and dielectric measurements. The monoclinic phase transforms to tetragonal phase at 270oC after which the tetragonal phase transforms to paraelectric cubic phase at 370DoC. Dielectric properties show signature of the phase transformation. Hence, it is concluded to pole the MPB samples below 270o C to gain the advantage of increased ease of polarization reorientation for monoclinic phase. The fifth chapter deals with the systematic structural investigation on PZT1-y-PNZy (PZT-PNZ) and PZT1-y-PMNy (PZT-PMN) systems. In this chapter, an effort has been made to determine quantitatively the MPB phase contents and variation in Zr/Ti ratio of PZT-PZN and PZT-PMN systems. High resolution XRD data has been used for quantitative phase analysis using FULLPROF 2006. The correlation between the width of MPB and grain size has also been discussed for these systems. It is found that the addition of PMN and PZN to PZT system shifts the MPB towards pbZrO3 (PZ). The MPB can be regained by tuning the Zr/Ti ratio in the system. Further, there exists an inverse relation between the grain size and coexistence region in the system. It is seen that the MPB range is from x=0.48 to 0.58 and x=0.44 to 0.58 for 10% and 20% PZN concentration respectively. Similar trend has been obtained for the PZT-PMN system. The MPB ranges from x=0.46 to 0.53 and x=0.42 to 0.50 for 10% and 20% PMN respectively. The broadening of coexistence width is attributed to the lower grain size of our samples synthesized by adopting low temperature calcinations route. The sixth chapter deals with the hot pressing technique employed (adopting low temperature calcinations) for the synthesis of various PZT-PMN compositions with an intention of obtaining highly dense piezoceramics with fine, homogeneous and uniform microstructure. It also describes the dielectric, pyroelecrtic and pi ezoelectric properties were enhanced by hot processing technique. Li and Mn addition further improved the properties of the system. The seventh chapter investigates various nominal compositions of PZT-(Li, Nb) compositions based on certain assumptions. The attempt was made to introduce Li at A site and B site of ABO3 perovskite lattice. The ball milled, calcined powders were densified at<1000oC using hot pressing technique to prevent Li and Pb loss. High density ceramics have been studied for structural, dielectric, piezoelectric and pyroelectric properties. Through the clear cut evidence for the identification of Li site in the PZT system could not be established but the system which were synthesized under the assumption that Li substitutes A-site of the perovskite, favored the tetragonal phase and led to the enhancement in the dielectric, pyroelectric and piezoelectric properties. Further, their transition temperature was higher compared to the compositions where Li was tried to substitute B-site, which makes them promising candidates for transducer applications. The key finding in this thesis has been carried out by the candidate as part of the ph. D. programme. She hopes that this would constitute a worthwhile contribution towards the understanding of the behavior of lead based perovskites and in tailoring the properties of these ceramics towards device applications by the introduction of suitable additives in the system.
6

Thermal Expansion And Related Studies In Cordierite Ceramics And Relaxor Ferroelectrics

Sai Sundar, V V S S 09 1900 (has links) (PDF)
The following investigations have been carried out in this thesis 1)Cordierite is already well known for its low thermal expansion behaviour. Chemical substitutions at various octahedral and tetrahedral sites have been done and their thermal expansion characteristics have been studied Synthesis of cordierite in more reactive environment provided by AlF3 used as sintering aid has been attempted 2) Diffuse ferroelectric phase transition of lead based perovskite materials leads to low expansion region. Solid solutions of lead iron niobate with lead titanate is investigated to increase the structural distortion and see it this low expansion region can be extended to wider temperature Preparation of materials with higher tetragonal distortion In PbTi03- BlFeO3 system is undertaken to study the thermal expansion anisotropy. 3) Composites between lead iron niobate(+(x) and lead titanate (-(x below Tc) has been undertaken to prepare low expansion hulk over a wide temperature range 4) Acoustic emission has been employed as a tool to detect the microcracking in solid solutions between PFN1-x, PTx, and PT1-x, ,BFx, It is hoped to understand relation between magnitude of lattice distortion transition temperature and microcracking in ceramics of the class of materials.
7

Correlation Between Structure, Microstructure and Enhanced Piezoresponse Around the Morphotropic Phase Boundary of Bismuth Scandate-Lead Titanate Piezoceramic

Lalitha, K V January 2015 (has links) (PDF)
Piezoelectric materials find use as actuators and sensors in automotive, aerospace and other related industries. Automotive applications such as fuel injection nozzles and engine health monitoring systems require operating temperatures as high as 300-500 oC. The commercially used piezoelectric material PbZr1-xTixO3 (PZT) is limited to operating temperatures as low as 200 oC due to the temperature induced depolarization effects. PZT, in the undoped state exhibits a piezoelectric coefficient (d33) of 223 pC/N and ferroelectric-paraelectric transition temperature (Tc) of 386 oC. The enhanced properties of PZT occur at a region between the tetragonal and rhombohedral phases, called the Morphotropic Phase Boundary (MPB). Therefore, search for new materials with higher thermal stability and better sensing capabilities were focused on systems that exhibit a PZT-like MPB. This led to the discovery of (x)BiScO3-(1-x)PbTiO3 (BSPT), which exhibits an MPB with enhanced Tc (450 oC) and exceptionally high piezoelectric response (d33 = 460 pC/N). Theoretical studies have shown that the mechanism of enhanced piezoresponse in ferroelectric systems is related to the anisotropic flattening of the free energy profiles. An alternative view point attributes the anomalous piezoelectric response to the presence of high density of low energy domain walls near an inter-ferroelectric transition. Diffraction is a versatile tool to study the structural and microstructural changes of ferroelectric systems upon application of electric field. However, characterization of electric field induced structural and microstructural changes is not a trivial task, since in situ electric field dependent diffraction studies almost invariably give diffraction patterns laden with strong preferred orientation effects, due to the tendency of the ferroelectric/ferroelastic domains to align along the field direction. Additionally, diffraction profiles of MPB compositions exhibit severe overlap of Bragg peaks of the coexisting phases, and hence, it is difficult to ascertain with certainty, if the alteration in the intensity profiles upon application of electric field is due to change in phase fraction of the coexisting phases or due to preferred orientation induced in the different phases by the electric field. The characterization of electric field induced phase transformation in MPB systems, has therefore eluded researchers and has been considered of secondary importance, presumably due to the difficulties in unambiguously establishing the structural changes upon application of electric field. In fact, majority of the in situ electric field dependent diffraction studies have been carried out on compositions just outside the MPB range, i.e. on single phase compositions. In such studies, the focus has been mainly on explaining the piezoelectric response in terms of motions of the non-180° domain walls and field induced lattice strains. In this dissertation, the BSPT system has been systematically investigated with the view to understand the role of different contributing factors to the anomalous piezoelectric response of compositions close to the MPB. Using a comparative in situ electric field dependent diffraction study on a core MPB composition exhibiting highest piezoelectric response and a single phase monoclinic (pseudo-rhombohedral) composition just outside the MPB, it is demonstrated that, inspite of the significantly large domain switching and lattice strain (obtained from peak shifts) in the single phase composition, as compared to the MPB composition, the single phase composition shows considerably low piezoelectric response. This result clearly revealed that the anomalous piezoelectric response of the MPB composition is primarily associated with field induced inter-ferroelectric transformation and the corresponding field induced interphase boundary motion. A simple strategy has been employed to establish the field induced structural transformation for the MPB compositions, by overcoming the experimental limitation of in situ electric field dependent diffraction studies. The idea stemmed from the fact that, if the specimens for diffraction study can be used in powder form instead of pellet, the problems associated with preferred orientation effects can be eliminated, and the nature of field induced structural changes can be accurately determined. A comparative study of the diffraction profiles from poled (after subjecting the specimen to electric field) and unpoled (before subjecting the specimen to electric field) powders could precisely establish the nature of electric field induced phase transformation for the MPB compositions of BSPT and provided a direct correlation between the electric field induced structural changes and the enhanced piezoelectric response. A new ‘powder poling’ technique was devised, which involves application of electric field to powder form of the specimen. Using this technique, it was possible to study separately, the effect of stress and electric field on the nature of structural transformation. A unique outcome of this study was, it could demonstrate for the first time, analogous nature of the stress and electric field induced structural transformation. A comparative study of the dielectric response of poled and unpoled samples was used to show a counterintuitive phenomenon of field induced decrease in polarization coherence for the MPB compositions. This approach was used to suggest that the criticality associated with the MPB extends beyond the composition boundary conventionally reported in literature based on bulk diffraction techniques (x-ray and neutron powder diffraction). The layout of the dissertation is as follows: Chapter 1 gives a brief introduction of the fundamental concepts related to ferroelectric materials. The theories that explain the enhanced piezoresponse of MPB based ferroelectric systems have been outlined. Detailed information of the existing literature is presented in the relevant chapters. Chapter 2 presents the details of the solid state synthesis of BSPT compositions and structural analysis using diffraction studies. The dielectric measurements were used to establish the Tc for the different compositions. The enhanced ferroelectric and piezoelectric properties were observed for the MPB compositions, which were shown to exhibit coexistence of tetragonal and monoclinic phases from structural studies. The critical MPB composition exhibiting highest piezoelectric and ferroelectric properties was established to be x = 0.3725. The thermal stability of the critical MPB composition was established to be 400 oC using ex situ thermal depolarization studies. The common approach of structural analysis in the unpoled state failed to provide a unique relationship between the anomalous piezoelectric response and the structural factors at the MPB, emphasizing the need to characterize these system using electric field dependent structural studies. Chapter 3 presents the results of in situ electric field dependent diffraction measurements carried out at Argonne National Laboratory, USA. The quasi-static field measurements could successfully quantify the non-180o domain switching fractions and the field induced lattice strains. The changes in the integrated intensities were used to obtain the non-180o domain switching fraction and the shift in peak positions were used to quantify the field induced lattice strains. The in situ studies could successfully explain the macroscopic strain response for the single phase pseudo-rhombohedral (monoclinic) composition on the basis of domain switching mechanisms and field induced lattice strains. The MPB compositions were shown to have additional contributions from interphase boundary motion, resulting from change in phase fraction of the coexisting phases. The results emphasized the need to investigate the electric field induced transformation for MPB compositions, in order to give a comprehensive picture of the various contributions to the macroscopic piezoreponse. While Rietveld analysis could be used to investigate the phase transformation behaviour upon application of electric field, textured diffraction profiles obtained using in situ studies, in addition to the severely overlapping Bragg reflections of the coexisting phases for the MPB compositions hindered reliable estimation of the structural parameters. An alternate approach to investigate the field induced phase transformation is presented in Chapter 4. The stroboscopic measurements on the MPB composition showed evidence of non-180o domain wall motion even at sub-coercive field amplitudes as low as 0.1 kV/mm. Chapter 4 presents the results of the ex situ electric field dependent structural study, wherein the diffraction profiles collected from poled powders is compared to that of unpoled powders. The diffraction profiles from the poled powders did not exhibit any field induced crystallographic texture and could successfully be analyzed using Rietveld analysis. High resolution synchrotron diffraction studies (ESRF, France) carried out on closely spaced compositions revealed that, the composition exhibiting the highest piezoelectric response is the one, which exhibits significantly enhanced lattice polarizability of both the coexisting (monoclinic and tetragonal) phases. The enhanced lattice polarizability manifests as significant fraction of the monoclinic phase transforming irreversibly to the tetragonal phase after electric poling. The monoclinic to tetragonal transformation suggested the existence of a low energy polarization rotation pathway towards the [001]pc direction in the (1 1 0)pc pseudocubic plane of the monoclinic phase. The results are discussed on the basis of the existing theories that explain piezoresponse in MPB systems and are in support of the Polarization rotation model, in favor of a genuine monoclinic phase. Chapter 5 discusses the ferroelectric-ferroelectric stability of the MPB compositions in response to externally applied stress and electric field independently. Using the newly developed ‘powder poling’ technique, which is based on the concept of exploiting the irreversible structural changes that occur after application of electric field and stress independently, it was possible to ascertain that, both moderate stress and electric field induce identical structural transformation - a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. The powder poling technique was also used to demonstrate field induced inter-ferroelectric transformation at sub-coercive field amplitudes. In addition, the analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, it was demonstrated that, the criticality associated with the inter-ferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques. Chapter 6 presents the closure and important conclusions from the present work and summarizes the key results, highlighting the proposed mechanism of enhanced piezoresponse in BSPT. The last part of the chapter deals with suggestions for future work from the ideas evolved in the present study. vi
8

Investigations into the Synthesis, Structural, Dielectric, Piezoelectric and Ferroelectric Properties of Lead-Free Aurivillius Family of Oxides

Kumar, Sunil January 2011 (has links) (PDF)
Bismuth layer-structured ferroelectrics have received significant attention recently due to their fairly high TC and good fatigue endurance which make them important candidates for non-volatile ferroelectric random access memories (Fe-RAMs) as well as for the piezoelectric device applications at high temperatures. Structure of these compounds is generally described as the pseudo-perovskite block (An-1BnO3n+1)2- sandwiched between the bismuth oxide layers (Bi2O2)2+ along the c-axis, where n represents the number of corner sharing BO6 octahedra forming the perovskite-like slabs. Only a few compounds belonging to this family show relaxor behavior (frequency dependent diffuse phase transition). Relaxor ferroelectrics are very attractive for a variety of applications, such as capacitors, sensors, actuators, and integrated electromechanical systems. The present work attempts to understand the mechanism of relaxor behavior in Aurivillius oxides as well as to improve the piezoelectric and ferroelectric properties of some of the known phases. Details pertaining to the fabrication and characterization of BaBi4Ti4O15 (n = 4 member of Aurivillius family of oxides) ceramics are presented. X-ray diffraction, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to probe the structural and microstructural details. The contribution of irreversible domain wall movement to the room temperature dielectric constant and polarization was quantitatively evaluated using the nonlinear dielectric response. Dielectric dispersion and conduction mechanism of these ceramics are also explicated using the complex impedance spectroscopy. The effects of La3+ and Ca2+ doping on the phase transition behavior and other properties of BaBi4Ti4O15 are investigated. La3+ doping for Bi3+ was found to strengthen the relaxor behavior. New compounds such as CaNaBi2Nb3O12, SrNaBi2Nb3O12, Na0.5La0.5Bi4Ti4O12, etc. belonging to the Aurivillius family of oxides have been synthesized and investigations concerning their structural, dielectric and ferroelectric properties are presented. Rietveld refinement of room temperature X-ray powder data suggested that CaNaBi2Nb3O12 and SrNaBi2Nb3O12crystallize in the orthorhombic space group B2cb. SrNaBi2Nb3O12 ceramics exhibited frequency-dependent Tm which follows the Vogel-Fulcher relation implying a relaxor nature. No frequency dependence of Tm was observed for CaNaBi2Nb3O12 ceramics. Polarization - electric field hysteresis loops recorded well above Tm confirmed the coexistence of polar and non-polar domains in SrNaBi2Nb3O12 ceramics. Dielectric anomaly observed around 675 K for CNBN corresponds to the ferroelectric to paraelectric phase transition which is accompanied by the change in crystal structure from orthorhombic to tetragonal. Fe and Nb co-doped Bi4Ti3O12 ceramics were fabricated and characterized for their structural, electrical and magnetic properties.

Page generated in 0.0688 seconds