• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 110
  • 31
  • 18
  • 14
  • 14
  • 14
  • 13
  • 11
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 420
  • 420
  • 106
  • 75
  • 69
  • 67
  • 60
  • 59
  • 50
  • 45
  • 43
  • 39
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Produktivní obrábění titanových slitin - I. / Productive Machining of Titanium Alloys - I.

Lengálová, Barbora January 2011 (has links)
This study consists of theoretical and practical part. Theoretical part of study resumes properties of titanium and it alloys and mentions application field and the way of production. Study includes review of machining strategies of titanium alloys. The materials for cutting tools and various types of tool wear are included. The experimental part of study consists of two partial experiments focused on the face milling by the ball – end milling cutter. First part is focused on facial milling of the inside part of spherical surface by the ball – end milling cutter and thus its surface roughness rating. The second part of experiment focuses on the milling of flat surface by the ball – end milling cutter and consequential analysis of cutting forces when the chip thickness is variable.
392

Étude comparative du comportement mécanique et des mécanismes de déformation sous cisaillement simple monotone et cyclique des alliages de titane élaborés par métallurgie des poudres : structures harmoniques versus alliages conventionnels / Mechanical behavior and deformation mechanisms under monotonous and cyclic shear test of titanium alloys developed by poxder metallurgy : harmonic structures versus conventional alloys

Hocini, Azziz 19 December 2017 (has links)
Le développement de matériaux conventionnels met l'accent sur l’affinement etl'homogénéisation des tailles de grains. Cela, ne satisfait généralement pas le besoin d’avoir desmatériaux à la fois résistants et ductiles, deux caractéristiques plutôt antagonistes. Dans laprésente étude, le concept de structure harmonique (HS) permettant de créer une microstructure,hétérogène, à gradient de taille des grains est utilisé pour surmonter cette antinomie. Lesmatériaux HS sont constitués de structures à grains ultrafins et à gros grains, appelées «coquille»et «coeur», respectivement. Le réseau de coquilles étant interconnecté en 3D. Dans cette étude, leTi pur, et les deux alliages Ti-6Al-4V et Ti-25Nb-25Zr sont traités de manière à produire desmatériaux HS. Leurs propriétés mécaniques, ainsi que celles des matériaux homogènes(conventionnels) correspondants ont été évaluées principalement en cisaillement simple(monotone et cyclique). En particulier, les matériaux HS démontrent comme attendu, une forterésistance mécanique, sans perte ductilité. Pour accéder aux mécanismes de durcissement, unmodèle de partition des contraintes est appliqué et les différentes contributions à la contraintemacroscopique ont été extraites et leur influence sur l'évolution du durcissement est présentée etdiscutée, en relation avec les mécanismes de déformation sous-jacents. En particulier, ladélocalisation de la déformation plastique due au gradient de microstructure et la périodicité decette dernière joue un rôle fondamental dans les comportements observés. / Conventional material developments have emphasized ultrafine grain refinement andhomogenization. However, nanostructured and homogeneous materials do not usually satisfy theneed to be both strong and ductile, which are, of course, rather contradictory characteristics. Inthe framework of this study, the concept of Harmonic Structure Materials Design (HS) thatcreates a nanostructured and heterogeneous microstructure has been used as a means to creatematerials to overcome that antinomy through its unique microstructure. The HS materials consistof ultra-fine grain and coarse grain structures known as shell and core, respectively. They have anetwork structure of continuously connected shells. In this study, pure Ti, Ti-6Al-4V and Ti-25Nb-25Zr alloys were processed so as to produce HS materials. The mechanical properties ofHS and homogeneous (conventional) counterpart materials were evaluated mainly throughsimple shear tests (monotonous and cyclic). In particular, the HS materials high strengths,without ductility lost under simple shear loadings. Stress partitioning model was applied and thedifferent contributions to the applied macroscopic stress were extracted and their influence onthe work hardening evolution presented and discussed, in relation to the underlying deformationmechanisms. In particular, the delocalization of plastic deformation due to the grain size gradientplays a fundamental role in the observed behavior.
393

Metastabilní slitina Ti-15Mo připravená práškovou metalurgií / Metastable alloy Ti-15Mo prepared by powder metallurgy

Veverková, Anna January 2019 (has links)
This diploma thesis focused on manufacturing and characterization of Ti-15Mo metastable beta-Ti alloy prepared by cryogenic milling and spark plasma sintering. Initial powder was prepared by gas atomization and consequently deformed by cryogenic milling (milled powder). Both initial and milled powders were compacted by spark plasma sintering (SPS) at temperatures from 750 řC to 850 řC. Dependence of microstructure and mechanical properties on the parameters of preparation was studied. During cryo-milling, powder particles significantly changed shape from ball-shaped to disc-shaped. Particles were not refined by milling, but severely plastically deformed. SEM observations showed that all prepared samples contain duplex alpha + beta structure. Volume fraction of alpha phase is significantly higher in the sintered milled powder due to increased beta- transus temperature caused by contamination by oxygen and also due to easier alpha phase precipitation caused by refined microstructure. Maximum microhardness of 350 HV was achieved for both types of sintered powders. High microhardness of sintered initial powder can be attributed to formation of omega phase during cooling, while sintered milled powder is strengthened by refined microstructure and small alpha phase precipitates. Cryogenic milling prior to...
394

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys

Carl, Matthew A 05 1900 (has links)
NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable H-phase nano precipitates, formed in NiTiHf and NiTiZr HTSMAs, based on prior thermo-mechanical processing in a commercial NiTi-15 at.% Hf HTSMA to examine the final processing methods and aging characteristics. Through this research, knowledge of the precipitation paths in NiTiZr and NiTiHf HTSMAs is extended and methods for characterization of phases and strains using high energy XRD are elucidated for future work in the field.
395

Processing of NiTi Shape Memory Alloys through Low Pressure and Low Temperature Hydrogen Charging

Briseno Murguia, Silvia 05 1900 (has links)
Many industries including the medical, aerospace, and automobile industries have increasingly adopted the use of shape memory alloys (SMAs) for a plethora of applications due to their unique thermomechanical properties. From the commercially available SMAs in the market, binary NiTi SMAs have shown the most desirable properties. However, SMA properties can be significantly affected by the fabrication process. One of the most familiar applications of NiTi SMAs is in the design of actuating devices where the shape memory effect properties are highly advantageous. Spring NiTi SMA actuators are among the most commonly used and are generally made by torsion loading a straight wire. Consequently, stress concentrations are formed causing a reduction in recovery force. Other methods for producing springs and other NiTi SMA components is the fast emerging manufacturing method of additive manufacturing (AM). AM often uses metal powders to produce the near-net shape components. A major challenge for SMAs, in particular, is their well-known composition sensitivity. Therefore, it is critical to control composition in NiTi SMAs. In this thesis, a novel method for processing NiTi SMAs for pre-alloyed NiTi SMA powders and springs is presented. A low pressure and low temperature hydriding-pulverization-dehydriding method is used for preparing the pre-alloyed NiTi SMA powders with well-controlled compositions, size, and size distributions from wires. By hydrogen charging as-drawn martensitic NiTi SMA wires in a heated H3PO4 solution, pulverizing, and dehydriding, pre-alloyed NiTi powders of various well-controlled sizes are produced. In addition, a low pressure and low temperature hydriding-dehydriding method is used for producing NiTi SMA helixes from wires. The helix pattern in the pre-alloyed NiTi SMA wires was obtained by hydrogen charging NiTi SMA 500 μm diameter wires at different time intervals, followed by dehydriding to remove the hydrogen. The wires, powders, and resulting helixes were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD). The relationship between the wire diameter, powder particle size, and helix geometry as a function of hydrogen charging time is investigated. Lastly, the recovery behavior due to the shape memory effect is also investigated after dehydriding.
396

Synchrotron Radiation X-Ray Diffraction of Nickel-Titanium Shape Memory Alloy Wires During Mechanical Deformation

Zhang, Baozhuo 12 1900 (has links)
Shape memory alloys (SMAs) are a new generation material which exhibits unique nonlinear deformations due to a phase transformation which allows it to return to its original shape after removal of stress or a change in temperature. It shows a shape memory effect (martensitic condition) and pseudoelasticity (austenitic condition) properties depends on various heat treatment conditions. The reason for these properties depends on phase transformation through temperature changes or applied stress. Many technological applications of austenite SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this thesis, I investigated two important mechanical feature to fatigue behavior in pseudoelastic NiTi SMA wires using high energy synchrotron radiation X-ray diffraction (SR-XRD). The first of these involved simple bending and the second of these involved relaxation during compression loading. Differential scanning calorimetry (DSC) was performed to identify the phase transformation temperatures. Scanning electron microscopy (SEM) images were collected for the initial condition of the NiTi SMA wires and during simple bending, SEM revealed that micro-cracks in compression regions of the wire propagate with increasing bend angle, while tensile regions tend to not exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (100), (110), and (101) planes, intensities and residual strain values exhibit strong anisotropy depending upon whether the sample is in compression or tension during simple bending. This research provides insight into two specific mechanical features in pseudoelastic NiTi SMA wires.
397

Vysokocyklová únava titanové slitiny Ti6Al4V / High cycle fatigue of Ti6Al4V titanium alloy

Bártková, Denisa January 2013 (has links)
The main goal of this master's thesis is an analysis of high-cycle fatigue of titanium alloy Ti- 6Al- 4V. In the first section of a theoretical part of the thesis, there are summarized current facts about production, properties and aplications of titanium alloys. The second section pursues fatigue behaviour of material. An experimental part consists of metallographic analysis, evaluation of tension and bending tests and mainly analysis of high-cycle fatigue behavior for different assymetry ratios.
398

Аддитивные технологии 3d печати в производстве титановых имплантатов и испытание полученных материалов на пластическое сжатие : магистерская диссертация / Additive 3d printing technologies in the production of titanium implants and testing of the obtained materials for plastic compression

Ханыкова, Е. В., Khanykova, E. V. January 2018 (has links)
The subject of the study is a titanium implant. The research method consists in the approximate solution of the boundary value problem by the finite element method in the ABAQUS software module. A patent and literature search in the field of application of additive technologies in the production of implants. The first section presents the results of the review. Were considered methods of additive manufacturing and methods of testing porous materials, the results are described in the second section. A description of the test for precipitation of a porous implant and a finite element simulation of the process of precipitation of cellular material have been carried out. As a result, the distribution scheme of the parameters of the stress-strain state was constructed, which allows estimating dangerous sections from the standpoint of structural failure. The obtained data can be applied in building the architecture of a set of unit cells with a description of the stress-strain state. / Предметом исследования является титановый имплантат. Метод исследования состоит в приближенном решении краевой задачи методом конечных элементов в программном модуле ABAQUS. Проведен патентно-литературный поиск в области применения аддитивных технологий в производстве имплантатов. В первом разделе представлены результаты обзора. Были рассмотрены методы аддитивного производства и способы испытания пористых материалов, результаты описаны во втором разделе. Проведено описание испытания на осадку пористого имплантата и конечно-элементное моделирование процесса осадки ячеистого материала. В результате чего была построена схема распределения параметров напряженно-деформированного состояния, которая позволяет оценить опасные сечения с позиции разрушения конструкции. Полученные данные могут быть применены в построении архитектуры набора элементарных ячеек с описанием напряженно-деформированного состояния.
399

Особенности формирования текстуры в сплаве Ti-6-4 в процессе 3D-печати методом селективного электронно-лучевого спекания : магистерская диссертация / Features of texture formation in the Ti-6-4 alloy manufactured by the method of selective electron beam melting

Насчетникова, И. А., Naschetnikova, I. A. January 2021 (has links)
Методом ориентационной микроскопии (EBSD) исследованы текстурные состояния сплава Ti-6Al-4V, изготовленного методом селективного электронно-лучевого плавления (СЭЛС). Установлено, что текстура β-фазы представлена текстурой кристаллизации, при которой направление <100>β параллельно направлению синтеза изделия. Текстура α-фазы является многокомпонентной и наследует текстуру β-фазы через ОС Бюргерса. Показано, что при последующем охлаждении в сплаве Ti-6Al-4V выделяется вторичная βII-фаза, кристаллографически отличная от высокотемпературной β-фазы. Предложена схема протекающих фазовых превращений. / The textural states of the Ti-6Al-4V alloy fabricated by a method of electron beam melting (EBM) were studied by orientation microscopy (EBSD). It was found that the texture of the β-phase is represented by the texture of crystallization, where the direction <100>β is parallel to the building direction. The texture of the α-phase is multicomponent and inherits the texture of the β-phase following the Burgers OR. It was shown that upon subsequent cooling in the Ti-6Al-4V alloy, a secondary βII-phase is precipitated, which is crystallographically different from the high-temperature β-phase. A scheme of the ongoing phase transformations is proposed.
400

Simulating the mechanical response of titanium alloys through the crystal plasticity finite element analysis of image-based synthetic microstructures

Thomas, Joshua Michael 06 January 2012 (has links)
No description available.

Page generated in 0.0386 seconds