Spelling suggestions: "subject:"itanium dioxide."" "subject:"atitanium dioxide.""
331 |
Development of a novel magnetic photocatalyst : preparation, characterisation and implication for organic degradation in aqueous systemsBeydoun, Donia, Chemical Engineering & Industrial Chemistry, UNSW January 2000 (has links)
Magnetic photocatalysts were synthesised by coating a magnetic core with a layer of photoactive titanium dioxide. This magnetic photocatalyst is for use in slurry-type reactors in which the catalyst can be easily recovered by the application of an external magnetic field. The first attempt at producing this magnetic photocatalyst involved the direct deposition of titanium dioxide onto the surface of magnetic iron oxide particles. The photoactivity of these Fe3O4/TiO2 was lower than that of single-phase TiO2 and was found to decrease with an increase in the heat treatment. These observations were explained in terms of an unfavourable heterojunction between the titanium dioxide and the iron oxide core. Fe ion diffusion from the iron oxide core into the titanium dioxide matrix upon heat treatment, leading to a highly doped TiO2 lattice, was also contributing to the observed low activities of these samples. These Fe3O4/TiO2 particles were found to be unstable, with photodissolution of the iron oxide phase being encountered. This photodissolution was dependent on the heat treatment applied, the greater the extent of the heat treatment, the lower the incidence of photodissolution. This was explained in terms of the stability of the iron oxide phases present, as well as the lower photoactivity of the titanium dioxide matrix. In fact, the observed photodissolution was found to be induced-photodissolution. That is, the photogenerated electrons in the titanium dioxide phase were being injected into the lower lying conduction band of the iron oxide core, leading to its reduction and then dissolution. Thus, the approach of directly depositing TiO2 onto the surface of a magnetic iron oxide core proved ineffective in producing a stable magnetic photocatalyst. The introduction of an intermediate passive SiO2 layer between the titanium dioxide phase and the iron oxide phase inhibited the direct electrical contact and hence prevented the photodissolution of the iron oxide phase. Improvements in the photoactivity were seen to be due to the inhibition of both the electronic and chemical interactions between the iron oxide and titanium dioxide phases. Preliminary optimisation experiments revealed that a thin SiO2 layer is sufficient for inhibiting the photodissolution. The thickness of the TiO2 coating was found not to have a significant effect on the photocatalytic performance of the coated particles. Finally, heat treating for 20 minutes at 450??C was sufficient for converting the titanium dioxide into a photoactive phase, longer heating times had no beneficial effect on the photoactivity.
|
332 |
Heat transfer through mould flux with titanium oxide additionsBothma, Jan Andries. January 2006 (has links)
Thesis (M.Eng.)(Metallurgical)--University of Pretoria, 2006. / Includes summary. Includes bibliographical references. Available on the Internet via the World Wide Web.
|
333 |
Oxidation catalysis in environmental applications nitric oxide and carbon monoxide oxidation for the reduction of combustion emissions and purification of hydrogen streams /Yung, Matthew Maurice, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 216-224).
|
334 |
Abberation-corrected atomic number contrast scanning transmission electrion [sic] microscopy of nanocrystals and nanomaterial-based systems for use in next-generation photovoltaic devicesWatt, Tony L. January 2008 (has links)
Thesis (M. S. in Interdisciplinary Materials Science)--Vanderbilt University, Aug. 2008. / Title from title screen. Includes bibliographical references.
|
335 |
An in vivo examination of the pulmonary toxicity of ultrafine and fine carbon black and titanium dioxide defining the role of particle surface area /Sager, Tina Marie. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains xii, 278 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
336 |
Dye sensitized n-p heterojunctions of titanium dioxide and copper thiocyanate, a new interface for photoinduced charge separation /O'Regan, Brian C. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [108]-114).
|
337 |
Non-biological fixation of atmospheric nitrogen to nitrate on titanium dioxide and desert soil surfacesAl-Taani, Ahmed A. January 2008 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2008. / "December, 2008." Includes bibliographical references. Online version available on the World Wide Web.
|
338 |
Preparation and characterization of synthetic mineral surfaces : adsorption and thermal decomposition of tetraethoxysilane on magnesium oxide, molybdenum, and titanium dioxide surfaces /Jurgens-Kowal, Teresa Ann, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (p. [318]-347).
|
339 |
Characterisation of step coverage by pulsed-pressure metalorganic chemical vapour deposition : titanium dioxide thin films on 3-D micro- and nano-scale structures : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering at the University of Canterbury, Christchurch, New Zealand /Siriwongrungson, Vilailuck. January 2010 (has links)
Thesis (Ph. D.)--University of Canterbury, 2010. / Typescript (photocopy). Includes bibliographical references (p. 196-206). Also available via the World Wide Web.
|
340 |
Paramagnetic resonance studies of defects in titanium dioxide crystalsYang, Shan, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2010. / Title from document title page. Document formatted into pages; contains xiii, 115 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 95-99).
|
Page generated in 0.0475 seconds