• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

WO3, Se-WO3 ir TiO2/WO3 fotokatalizatorių sintezė, struktūra ir aktyvumas / Synthesis, structure and activity of WO3, Se-WO3 and TiO2/WO3 photocatalysts

Ostachavičiūtė, Simona 09 January 2015 (has links)
Pasaulyje neslopsta susidomėjimas fotokataliziniais procesais, kuriuos siekiama pritaikyti vandens skaidymo į vandenilį ir deguonį, organinių ar neorganinių junginių nukenksminimo technologijose. Fotoelektrocheminis vandens skaidymas į elementus vertinamas kaip vienas perspektyviausių būdų, galinčių ateityje užtikrinti efektyvų atsinaujinančių energijos šaltinių panaudojimą. Kuriant fotokatalizines sistemas, nanostruktūrinis titano dioksidas (TiO2) išlieka viena tinkamiausių ir labiausiai tyrinėtų medžiagų. Tačiau titano dioksidas neaktyvus regimosios spinduliuotės srityje, todėl alternatyva TiO2 fotokatalizatoriui gali būti kitas n-tipo puslaidininkis – volframo trioksidas (WO3). Volframo trioksidui yra būdingos fotochrominės savybės, jis absorbuoja dalį regimosios spinduliuotės. Daugelio tyrėjų nuomone, norint padidinti jo fotokatalizinį aktyvumą, tikslinga kurti mišrius oksidinius katalizatorius arba modifikuoti paviršių kitomis medžiagomis. Atsižvelgiant į literatūroje pateiktus duomenis, šiame darbe buvo siekiama pagaminti aktyvius kompozitinius fotokatalizatorius, kurių pagrindinė sudedamoji dalis yra volframo trioksidas. Darbas skirtas naujų medžiagų, kurios galėtų būti naudojamos fotokataliziniuose ir fotoelektrocheminiuose procesuose, paieškai ir charakterizavimui. Šio darbo tikslas – susintetinti TiO2, Se ir Co–P priedais modifikuotus volframo trioksido katalizatorius, ištirti jų struktūrą, fotokatalizines bei fotoelektrochemines savybes. / Scientific community exhibits a great interest in photocatalytic processes such as water photosplitting or photooxidation of organic substances. The photoelectrochemical splitting of water into hydrogen and oxygen is considered as the very promising pathway in the development of a long-term, sustainable energy economy. Titania (TiO2) still remains to be the most suitable for practical applications. However, using it as a photocatalyst still has some major issues: due to the fast recombination of photogenerated charge carriers, the overall quantum efficiency is relatively low, and titania is mostly sensitive to UV irradiation. Tungsten trioxide (WO3) is another semiconductor which can be employed in photocatalysis. Besides its photochromic properties, it has a smaller band gap than titania and may be activated under visible light illumination. In order to improve the photocatalytic efficiency it may be reasonable enough to combine both titania and tungsten trioxide into one photocatalyst or to modify their surface with various compounds. This work is relevant in the search of new materials suitable for photocatalytic and photoelectrocatalytic processes. The main object of this work was to synthesize active tungsten oxide-based composite catalysts and evaluate their structure and properties. Aim of the work was to synthesize WO3 catalysts modified with TiO2, Se and Co-P additives, to investigate their structure, photocatalytic and photoelectrochemical properties.
2

Nestechiometrinio titano oksido, gauto vandens garų plazmoje, elektrinių savybių tyrimas / Electrical properties investigation of non-stoichiometric titanium oxide obtained by water vapor plasma treatment

Girdzevičius, Dalius 02 February 2012 (has links)
Titano dioksidas, pasižymintis unikaliomis fizikinėmis bei cheminėmis savybėmis, yra gerai žinoma, plačiai naudojama bei tyrinėjama medžiaga. Tiriant TiO2 elektrines savybes, galima gauti informacijos, kokios naujos medžiagos fazės formuojasi plonasluoksnėse dangose. Elektrinė titano dioksido varža priklauso nuo bandinio stechiometriškumo, nusakančio vyraujančius defektus bei laidumo tipą. Siekiant gauti norimų savybių plonasluoksnes dangas, būtina atsižvelgti į bandinių paruošimo ir gamybos procesus. Bandinių nusodinimui naudojama vakuuminė užnešimo technika leidžia kontroliuoti procesus, lemiančius dangos savybes. Šiame darbe buvo atliekama literatūros analizė apie elektrines TiO2 savybes bei įvairių faktorių įtaką šio parametro kitimui. Taip pat atkreiptas dėmesys į plonasluoksnių struktūrų nusodinimą, naudojant fizikinį dangų nusodinimą iš garų fazės (PVD). Paviršinės TiO2 varžos tyrimas buvo atliekamas panaudojant 4 zondų metodą. / Titanium dioxide is well known, widely used and investigated material that shows unique physical and chemical properties. Investigations of TiO2 electrical conductivity gives an information about the new phases formed in thin films. Surface resistance of titanium dioxide depends on sample‘s stoichiometry and it shows predominant defects and type of conductivity being in the thin film structure. It is very important to pay an attention into processes of sample‘s preparation and formation technique in order to get thin films with desirable properties. Thin films were formed using vacuum deposition technique. There has been done a scientific literature survey in order to know the main factors that causes changes of TiO2 electrical properties in this work. An attention was paid into deposition of thin film structures using physical vapor deposition (PVD) technique as well. Measurements of TiO2 surface resistance were done using four probe method.
3

Masės pernešimo reiškiniai titano ant silicio padėklo dangose, oksiduotose vandens garų plazmoje / Study of mass-transport phenomena in titanium on silicon substrate films oxidized by water-vapor plasma

Vilkinis, Paulius 22 January 2014 (has links)
Darbe atlikta literatūros analizė šių procesų: (i) vykstančių vandens garų plazmoje; (ii) titano dangų oksidacija vandens garų plazmoje ir (iii) titano dioksido fotokatalitinės ir hidrofilinės savybės. TiO2 dangos buvo gautos po titano dangų ekspozicijos H2O garų plazmoje. Tyrimai parodė, kad TiO2 danga vandens garų plazmos aplinkoje formuoja elektrocheminį elementą. Darbe tirtos plazma aktyvuotos vandens skaldymo reakcijos. Parodyta, kad susidarę protonai pernešami per kietą TiO2 elektrolitą, o elektronai migruoja per plazmoje susiformavusią išorinę grandinę. Proceso metu dangos paviršinis sluoksnis formuojasi į TiO2–SiO2 kompozitą. Nors procesai vyksta žemoje temperatūroje, gauti rezultatai parodė masės pernešimo reiškinius, būdingus aukštoms temperatūroms. Pateikti nagrinėtų procesų mechanizmai. Darbo metu bandinių eksperimentinė analizė atlikta elektroninės dispersinės spektroskopijos (EDS), rentgeno spindulių difrakcijos (RSD), Auger elektroninės spektroskopijos (AES), skenuojančio elektroninio mikroskopo (SEM), optinės mikroskopijos ir kontaktinio profilometro metodais. / Processes in water vapor plasma, titania film oxidation in water vapor plasma and titanium dioxide photocatalytic and hydrophilic properties are discussed in this paper. Titatium dioxide thin films were obtained after titanium thin film exposure in water vapor plasma. Specimen together with H2O plasma forms electrochemical cell. In plasma film surface is activated and photocatalytic water splitting reactions occurs. Generated hydrogen ions are transported through solid titanium electrolyte and electrons are conducted to an external circuit via plasma. Titanium dioxide films surfaces are converted into composited composed of TiO2 and SiO2. Although oxidation process occurs in room temperature results showed mass transfer processes which occurs in high temperature. Specimens were analysed by electron dispersion spectroscopy (EDS), (X-ray diffraction (XRD), Auger electron spectroscopy (AES), glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), optical microscopy and nanoprofilometer methods.

Page generated in 0.0508 seconds