• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Tool Paths for Impellers

Kuo, Hsin-Hung 02 September 2004 (has links)
Impellers are important components in the field of aerospace, energy technology, and precision machine industries. Considering the high accuracy and structural integrity, impellers might be manufactured by cutting. Due to their complex geometries and high degrees of interference in machining, multi-axis machines are requested to produce impellers. The object of this thesis is to improve 5-axis tool paths for surface quality of impellers by smoothing point cutting tool paths in terms of linear segments and B-Splines and by using flank milling technologies with linear segment and B-Splines tool paths. Experimental results show that the surface quality of impeller blades can be improved by point cutting with smoothed tool paths and by flank milling. Moreover, the required milling time can be reduced by 18 percent and 13percent based on smoothed linear tool paths and smoothed B-Splines tool paths, respectively.
2

Tool orientation estimation to control the angle tightening process of threaded joints / Estimering av ett verktygs orientering för att kontrollera vinkelåtdragning av skruvförband

Thiel, Max January 2019 (has links)
The most common method for securing components to each other during manufacturing of products is by joining these using screws, nuts and bolts. The benefit of using this method is that it is cheap and makes it easy to join and separate components quickly. The clamping force in the threaded joint is critical to the quality and in some respect the life length of the product, which makes it important to have good control of the clamping force. There are two main tightening strategies used when tightening a threaded joint – torque controlled tightening and angle controlled tightening. The first method monitors the applied torque during the entire tightening and halts when the target torque is reached. The second method, angle controlled tightening, measures the rotation of the threaded fastener in the joint. This method generally produces more accurate results with less scatter in the final clamping force. In order to apply angle controlled tightening using a hand-held tool it is required to not only control the output angle of the tool, but also how the tool moves in relation to the joint. This is to ensure that the control signal from the motor actually translates to clamping force in the joint and not to rotation of the tool itself. This thesis project aims to analyze data from an IMU (Inertial Measurement Unit) built into a hand-held tightening tool in order to estimate tool movement and thereby react to undesired tool movement. An analysis has been performed to evaluate how the two sensor fusion methods – Kalman filter and Particle filter – perform in terms of estimating the orientation of the tool by combining measurements from the IMU’s accelerometers and gyroscopes. Data was collected from the tool IMU during a number of angle tightening sequences with varying setups. Test were performed both for when the tool was kept still during the entire tightening and for when the tools was allowed to move freely. Tests were also carried out for a couple of different tool orientations to better understand the behavior of the two sensor fusion models. The results from the tests showed that the Kalman Filter was able to better estimate the tool orientation. Especially in terms of accuracy, repeatability and reliability. / Den vanligaste metoden för att fästa komponenter till varandra vid tillverkning av produkter är genom att sammanfoga komponenterna med hjälp av skruvar, bultar och muttrar. Fördelen med denna metod är att den är billig och gör det enkelt att sammanfoga och lossa komponenter snabbt. Klämkraften i skruvförbandet är avgörande för hur väl en produkt är ihopsatt och påverkar därmed dess kvalitet, samt i viss mån livslängd. Det finns i huvudsak två olika strategier vid åtdragning i ett skruvförband – momentåtdragning och vinkelåtdragning. Den första metoden bygger på att man kontinuerligt mäter momentet under åtdragning och avbryter åtdragningen när rätt moment uppnåtts. Den andra metoden, vinkelåtdragning, mäter hur många grader fästelementet roterat i förbandet. Metoden producerar i regel högre precision med mindre spridning av den slutgiltiga klämraften. För att kunna tillämpa vinkelåtdragning med ett handhållet verktyg räcker det inte att kontroll över rotationen av verktygets utgående axel, utan även hur verktyget rör sig i förhållande till förbandet under åtdragning. Detta för att säkerställa att verktygets motorstyrning resulterar i önskad klämkraft i förbandet och inte rotation av själva verktyget. Detta examensarbete ämnar analysera data från en IMU (Inertial Measurement Unit) integrerad i ett handhållet åtdragningsverktyg för att estimera verktygets rörelse under vinkelåtdragning och därmed kompensera för oönskade rörelser. En analys har gjorts för hur väl de två olika sensorfusions-modellerna - Kalmanfilter och Partikelfilter – presterar när det kommer till att uppskatta orientering för verktyget genom att kombinera data från IMU-enhetens accelerometrar och gyroskop. Data samlades in från verktygets IMU från ett antal dragningar med varierande uppställning. Tester genomfördes dels då verktyget hölls stilla under hela åtdragningen och dels då det tilläts röra sig fritt. Tester genomfördes även för flera olika orienteringar av verktyget för att i större utsträckning kunna säga hur de olika sensorfusions-modellerna presterade. Resultatet av testerna visade att Kalmanfiltret kunde producera bättre estimeringar av verktygets orientering, speciellt i avseende precision, repeterbarhet och tillförlitlighet.
3

Toolpath and Cutter Orientation Optimization in 5-Axis CNC Machining of Free-form Surfaces Using Flat-end Mills

Luo, Shan 24 December 2015 (has links)
Planning of optimal toolpath, cutter orientation, and feed rate for 5-axis Computer Numerical Control (CNC) machining of curved surfaces using a flat-end mill is a challenging task, although the approach has a great potential for much improved machining efficiency and surface quality of the finished part. This research combines and introduces several key enabling techniques for curved surface machining using 5-axis milling and a flat end cutter to achieve maximum machining efficiency and best surface quality, and to overcome some of the key drawbacks of 5-axis milling machine and flat end cutter use. First, this work proposes an optimal toolpath generation method by machining the curved surface patch-by-patch, considering surface normal variations using a fuzzy clustering technique. This method allows faster CNC machining with reduced slow angular motion of tool rotational axes and reduces sharp cutter orientation changes. The optimal number of surface patches or surface point clusters is determined by minimizing the two rotation motions and simplifying the toolpaths. Secondly, an optimal tool orientation generation method based on the combination of the surface normal method for convex curved surfaces and Euler-Meusnier Sphere (EMS) method for concave curved surfaces without surface gouge in machining has been introduced to achieve the maximum machining efficiency and surface quality. The surface normal based cutter orientation planning method is used to obtain the closest curvature match and longest cutting edge; and the EMS method is applied to obtain the closest curvature match and to avoid local gouging by matching the largest cutter Euler-Meusnier sphere with the smallest Euler-Meusnier sphere of the machined surface at each cutter contact (CC) point. For surfaces with saddle shapes, selection of one of these two tool orientation determination methods is based on the direction of the CNC toolpath relative to the change of surface curvature. A Non-uniform rational basis spline (NURBS) surface with concave, convex, and saddle features is used to demonstrate these newly introduced methods. Thirdly, the tool based and the Tri-dexel workpiece based methods of chip volume and cutting force predictions for flat-end mills in 5-axis CNC machining have been explored for feed rate optimization to achieve the maximum material removal rate. A new approach called local parallel slice method which extends the Alpha Shape method - only for chip geometry and removal volume prediction has been introduced to predict instant cutting forces for dynamic feed rate optimization. The Tri-dexel workpiece model is created to get undeformed chip geometry, chip volume, and cutting forces by determining the intersections of the tool envelope and continuously updating the workpiece during machining. The comparison of these two approaches is made and several machining experiments are conducted to verify the simulation results. At last, the chip ploughing effects that become a more serious problem in micro-machining due to chip thickness not always being larger than the tool edge radius are also considered. It is a challenging task to avoid ploughing effects in micro-milling. A new model of 3D chip geometry is thus developed to calculate chip thickness and ploughing volume in micro 5-axis flat-end milling by considering the minimum chip thickness effects. The research forms the foundation of optimal toolpath, cutter orientation, cutting forces/volume calculations, and ploughing effects in 5-axis CNC machining of curved surfaces using a flat-end mill for further research and direct manufacturing applications. / Graduate / 0548 / luoshan@uvic.ca

Page generated in 0.1368 seconds