• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 12
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 33
  • 29
  • 19
  • 19
  • 17
  • 13
  • 13
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Extremal transition and quantum cohomology / 端転移と量子コホモロジー

Xiao, Jifu 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19259号 / 理博第4114号 / 新制||理||1592(附属図書館) / 32261 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 入谷 寛, 教授 加藤 毅, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
52

[en] A DEFORMATION OF POISSON STRUCTURE IN TORIC VARIETY AND COHOMOLOGICAL CONSIDERATIONS / [pt] UMA DEFORMAÇÃO DE ESTRUTURA POISSON EM VARIEDADE TÓRICA E CONSIDERAÇÕES COHOMOLÓGICAS

MARCELO SANTOS DA SILVA 13 July 2021 (has links)
[pt] O estudo de deformações e degenerações de estruturas de Poisson ocupa posição especial dentro do marco clássico de análise de degenerações de estruturas geométricas. Nesta tese como resultado principal construímos uma deformação não trivial na qual a estrutura quadrática canônica do espaço projetivo complexo n-dimensional é limite contínuo de estruturas Kahlerianas. Além disso, como resultado segundário de estudos de deformações mostramos que uma estrutura Poisson invariante numa variedade tórica com número finito de folhas não pode ser exata na cohomologia Poisson. Nosso estudo também inclui considerações sobre cohomologia Poisson da estrutura quadrática canônica do espaço vetorial complexo n-dimensional. / [en] The study of deformations and degenerations of Poisson structures occupies a special position within the classical framework of analysis of degenerations of geometric structures. In this thesis as the main result we build a non-triavial deformation in which the canonical quadratic structure in CP(n) is a continuous limit of Kahlerian structures. Furthermore, as a secondary result of deformation studies we have shown that an invariant Poisson structure in a toric variety with finite number of leaves cannot be exact in Poisson cohomology. Our study also includes considerations about Poisson cohomology of the canonical quadratic structure of C(n).
53

Operational and quantum K-theory of toric varieties

Shah, Aniket M. January 2021 (has links)
No description available.
54

Spin-anyon duality and Z2 topological order

Rao, Peng 24 January 2023 (has links)
In this thesis we consider the properties of a class of Z2 topological phases on a two-dimensional square lattice. The ground states of Z2 topological order are generally degenerate on a periodic lattice, characterized by certain global Z2 quantum numbers. This property is important for application in quantum computing as the global quantum numbers can be used as protected qubits. It is therefore instrumental to construct and study Z2 topological order from a general framework. Our results in this thesis provide such a framework. It is based on the simplest and most illustrative Z2 topological order: the Toric Code (TC), which contains static and non-interacting anyonic quasiparticles e, m and ε. Building on this interpretation, in the first part of the thesis two exact mappings are presented from the spin Hilbert space to the Hilbert space of (e,m) and (e,ε). The mappings are derived on infinite, open, cylindrical and periodic lattices respectively. Mutual anyonic statistics as well as the effect of the global Z2 quantum numbers are taken into account. Due to the mutual anyonic statistics of the elementary excitations, the mappings turn out to be highly non-local. In addition, it is shown that the mapping to e and ε anyons can be carried over directly to the honeycomb lattice, where the anyons become visons and Majorana fermions in the Kitaev honeycomb model. The mappings allow one to rewrite any spin Hamiltonians as Hamiltonians of anyons. In the second part of the thesis, we construct a series of spin models which are mapped to Hamiltonians of free anyons. In particular, a series of Z2 topological phases `enriched by lattice translation symmetry' are constructed which are also topological superconductors of ε particles. Their properties can be analyzed generally using the duality and then the theory of topological superconductivity. In particular, their ground state degeneracy on a periodic lattice may depend on lattice size. For these phases a classification scheme is proposed, which generalizes classification by the integer Chern number. Some of the conclusions are then verified directly by exact solutions on the spin lattice. The emergent anyon statistics of e-particles in these phases is also analyzed by computing numerically the Berry phase of their motion on top of the superconducting vacua. For phases with C=0 yet still topologically non-trivial, we discover examples of `weak symmetry breaking': the e-lattice splits into two inequivalent sublattices which are exchanged by lattice translations. The e-particles on the two sublattices acquire mutual anyonic statistics. In topological phases with non-zero C, the mutual braiding of e is confirmed explicitly. In addition, the Berry phase due to background flux of each square unit cell is quantized depending on the underlying topology of the phases. This quantity is related to properties of the vison band in Kitaev materials. Lastly, the ZN (N>2) extension of Z2 topological order is discussed. Constructing the duality to `parafermions' in this case is much more complex. The difficulties of deriving such a mapping are pointed out and we only present exact solutions to certain Hamiltonians on the spin lattice.
55

Filtrations on Combinatorial Intersection Cohomology and Invariants of Subdivisions

Tsang, Ling Hei January 2022 (has links)
No description available.
56

Geometric realizations of birational maps

Barban, Lorenzo 29 January 2024 (has links)
In this thesis we study the relation between algebraic torus actions on complex projective varieties and the birational geometry of their geometric quotients. Given a C*-action on a normal projective variety X, there exist two unique connected components of the fixed point locus, called the sink Y− and the source Y+, containing the limit at ∞ and 0 of the general orbit. Let GX− (resp. GX+) be the variety parametrizing the orbits converging to the sink (resp. the source). Since there exists an open subset of points converging to Y±, we obtain a birational map ψ: GX->GX+. By choosing different linearizations of ample line bundles on X, we obtain a factorization of the birational map ψ among inner geometric quotient, parametrizing different open subsets of stable points. In this setting, we investigate the local analytic geometry of the birational map ψ. On one hand we link certain birational transformations, called rooftop flips, with varieties with two projective bundles structures. On the other we study when the birational map ψ can be locally described by a toric flip of Atiyah type. If on one side a C*-action naturally induces a birational map among geometric quotients, it is meaningful to study the opposite direction: more precisely, given a birational map φ: Z+->Z− among normal projective varieties, how can we construct a normal projective variety X, endowed with a C*-action, such that Z− is the sink, Z+ is the source, and the natural birational map ψ constructed above coincide with φ? Such an X is called a geometric realization of the birational map φ. We propose a construction of a geometric realization of φ, whose geometry reflects the factorization of the map as a composition of flips, blow-ups and blow-downs. We describe in particular the case in which φ is a small modification of dream type, namely a birational map which is an isomorphism in codimension 1 associated to a finitely generated multisection ring. Moreover, we show that the cone of divisors associated to such multisection rings admits a chamber decomposition where the models are the geometric quotients of the C*-action. If in addition Z± are assumed to be toric varieties, we construct a function in SageMath to compute the polytope of the associated toric geometric realization.
57

Clinical investigation of flat pack toric contact lenses and wearer attitudes to environmental impact

Ghorbani Mojarrad, Neema, Rountree, L., Terry, L., Bruce, Heather, Hallam, Emily, Jolly, Louise, Retallic, N., Evans, K. 23 November 2023 (has links)
Yes / Objectives: To investigate the performance of a novel flat pack toric daily disposable contact lens compared with traditionally packaged toric lenses in a randomized, crossover study. Environmental attitudes to contact lens wear were also explored. Methods: Habitual contact lens wearers were recruited to wear a hioxifilcon A (Miru 1 day Flat Pack Toric, Menicon, Nagoya, Japan) test lens and a control lens: either nelfilcon A (Dailies AquaComfort Plus, Alcon, Geneva, Switzerland) or etafilcon A (1-Day Acuvue Moist, Johnson & Johnson, New Brunswick, NJ). Objective lens performance was assessed at fitting, and participants wore lenses in a randomized order for three consecutive days. Subjective measures of lens performance (comfort, vision, and handling) were then assessed by a questionnaire, with further questions on overall lens preference and environmental perceptions. Results: Objective measures of lens fit were similar for the test and control lenses, except for distance VA which was better with the control lenses (P<0.05; difference of two logMAR letters). End of day comfort was greater with the test lens, but this did not reach significance. Both lenses demonstrated similar scores for overall satisfaction. 87.5% of participants indicated the environmental impact of contact lenses to be important/extremely important to them, with 100% of participants identifying the flat pack packaging as having a smaller environmental impact. Conclusion: Overall, the lenses used in the study performed to similar levels. Environmental credentials are important to contact lens wearers, which may contribute to overall lens preference.
58

Sparse polynomial systems in optimization

Rose, Kemal 01 August 2024 (has links)
Systems of polynomial equations appear both in mathematics, as well as in many applications in the sciences, economics and engineering. Solving these systems is at the heart of computational algebraic geometry, a field which is often associated with symbolic computations based on Gr¨obner bases. Over the last thirty years, increasing performance and versatility made numerical algebraic geometry emerge as an alternative. It enables us to solve problems which are infeasible with symbolic methods. The focus of this thesis is the rich interplay between algebraic geometry, numerical computation and optimization in various instances. As a first application of algebraic geometry, we investigate global optimization problems whose objective function and constraints are all described by multivariate polynomials. One of the most important, and also most common, features of real world data is sparsity. We explore the effects of sparsity in global optimization, when exhibited by constraints and objective functions. Exploiting this property can lead to dramatic improvements of computational performance of algorithms. As a second application of geometry we study a particularly structured class of polynomial programs which stems from the optimization of sequencial decision rules. In the framework of partially observable Markov decision rules, an agent manipulates a system in a sequence of events. It selects an action at every time step, which in turn influences the state of the system at the next time step, and depending on the state it receives an instantaneous reward. Optimizing the long term reward has a long-standing history in computer science, economics and statistics. The ability to incorporate nondeterministic effects makes the framework particularly well suited for real world applications. We initiate a novel, geometric perspective on the underlying optimization problem and explore algorithmic consequences. As a third application of geometry we present the usage of tropical geometry in order to numerically compute defining equations of unirational varieties from their parametrization. Tropical geometry is an emerging field in mathematics at the boundary of discrete geometry and algebraic geometry. The tropicalization of a variety is a polyhedral complex which encodes geometric information of the variety. Tropical implicitization means computing the tropicalization of a unirational variety from its parametrization. In the case of a hypersurface, this amounts to finding the Newton polytope of the implicit equation, without computing its coefficients. We use this as a preprocessing step for numerical computation. Contrary to the above uses of geometry in application, we also employ numerical computation in pure mathematics. When relying on numerical methods, problems can be solved that are infeasible with symbolic methods, but the computational results lack a certificate for correctness. This often hinders the application of numerical computation with the purpose of proving mathematical theorems. With this in mind, we develop interval arithmetic as a practical tool for certification in numerical algebraic geometry.:1. Introduction 2. Certifying zeros of polynomial systems using interval arithmetic 3. Algebraic methods in decision processes 4. Discriminants and tropical implicitization
59

Sur une classe de structures kählériennes généralisées toriques

Boulanger, Laurence 04 1900 (has links)
Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie. / This thesis is about the problem of finding a natural notion of "scalar curvature" in generalized Kähler geometry. The approach taken here is to compute the moment map for the action of the group of hamiltonian diffeomorphisms on the space of generalized Kähler structures of symplectic type. Indeed, it is well known that the moment map for the restriction of this action to the space of ordinary Kähler structures can be naturally identified with the riemannian scalar curvature. We concern ourselves only with a certain class of generalized Kähler structures on toric manifolds which we denote by $DGK_{\omega}^{\mathbb{T}}(M)$ and which we recognize as being classified by the data of an antisymetric matrix $C$ and a real-valued strictly convex functions $\tau$ (exhibiting appropriate behavior on a neighborhood of the boundary of the moment polytope). This viewpoint makes obvious the fact that any toric Kähler structure can be deformed to a non-Kähler element of $DGK_{\omega}^{\mathbb{T}}(M)$, and we note that this deformation happens along one of the classes which were shown by R. Goto to be unobstructed. We identify sufficient conditions on a pair $(\tau,C)$ for it to define an element of $DGK_{\omega}^{\mathbb{T}}(M)$ and we show that in dimension 4, these conditions are also necessary. Following the adage "the moment map is the curvature" mentioned above, formulas for notions of "generalized Hermitian scalar curvature" and "generalized Riemannian scalar curvature" (in dimension 4) are obtained in terms of the function $\tau$. Finally, an expression for the generalized Riemannian scalar curvature in terms of the underlying bi-Hermitian structure is found in dimension 4. When compared with the results of the physicists Coimbra et al., our formula suggests a canonical choice for the dilaton of their theory.
60

Superfícies multitóricas, obstrução de Euler e aplicações / Multitoric surfaces, Euler obstruction and applications

Dalbelo, Thaís Maria 24 October 2014 (has links)
Neste trabalho estudamos superfícies com a propriedade que suas componentes irredutíveis são superfícies tóricas. Em particular, apresentamos uma fórmula para calcular a obstrução de Euler local destas superfícies. Como uma aplicação desta fórmula, calculamos a obstrução de Euler local para algumas famílias de superfícies determinantais. Além disso, definimos a característica de Euler evanescente de uma superfície tórica normal X&sigma;, damos uma fórmula para calcular tal invariante e relacionamos este número com a segunda multiplicidade polar de X&sigma;. Apresentamos também, uma fórmula para a obstrução de Euler de uma função f : X&sigma; &rarr; C e para o número de Brasselet de tal função. Como uma aplicação deste resultado, calculamos a obstrução de Euler de um tipo de polinômio definido em uma família de superfícies determinantais. / In this work we study surfaces with the property that their irreducible components are toric surfaces. In particular, we present a formula to compute the local Euler obstruction of such surfaces. As an application of this formula we compute the local Euler obstruction for some families of determinantal surfaces. Furthermore, we define the vanishing Euler characteristic of a normal toric surface X&sigma;, we give a formula to compute it, and we relate this number with the second polar multiplicity of X&sigma;. We also present a formula for the Euler obstruction of a function f : X&sigma; &rarr; C and for the Brasselet number of it. As an application of this result we compute the Euler obstruction of a type of polynomial on a family of determinantal surfaces.

Page generated in 0.06 seconds