• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] FIBRATIONS AND POISSON STRUCTURES WITH A FINITE NUMBER OF LEAVES / [pt] FIBRAÇÕES E ESTRUTURAS DE POISSON COM UM NÚMERO FINITO DE FOLHAS

LILIAN CORDEIRO BRAMBILA 04 February 2019 (has links)
[pt] Nesta tese introduzimos a noção de estrutura de Poisson fibrada em um fibrado localmente trivial. Isto é uma estrutura de Poisson no espaço total da fibração com condições naturais de compatibilidade com respeito as fibras e bases de Poisson dadas. Nosso resultado principal é uma receita para produzir estruturas de Poisson fibradas fora de apropriadas (pares de) ações de Poisson de grupos de Lie. Aplicamos este resultado para produzir estruturas de Poisson fibradas com fibra e base uma variedade tórica ou uma órbita coadjunta, aumentando assim a classe de variedades de Poisson compactas com um número finito de folhas simpléticas. / [en] In this thesis we introduce the notion of fibered Poisson structure on a locally trivial fiber bundle. This is a Poisson structure on the total space of the fibration with natural compatibility conditions with respect to the given Poisson base and fiber. Our main result is a recipe to produce fibered Poisson structures out of appropriate (pairs of) Poisson actions of Lie groups. We apply this result to produce fibered Poisson structures with fiber and base either a toric variety or a coadjoint orbit, thus enlarging the class of compact Poisson manifolds with a finite number of symplectic leaves.
2

Métriques de Kähler-Einstein sur les compactifications de groupes / Kähler-Einstein metrics on group compactifications

Delcroix, Thibaut 12 October 2015 (has links)
Le résultat principal de cette thèse est l'obtention d'une condition nécessaire et suffisante pour l'existence d'une métrique de Kähler-Einstein sur une compactification bi-équivariante lisse et Fano d'un groupe complexe réductif connexe. Ces variétés comprennent les variétés toriques et les compactifications magnifiques de groupes semisimples adjoints.Dans la première partie de ce travail sont développés les outils nécessaires à l'étude de l'existence de métriques de Kähler-Einstein sur ces variétés. Nous calculons en particulier la Hessienne complexe d'une fonction $Ktimes K$-invariante sur la complexification d'un groupe compact $K$. Nous associonségalement, à toute métrique invariante à courbure positive sur un fibré linéarisé ample sur une compactification de groupe, une fonction convexe dont le comportement asymptotique est prescrit. Ceci est utilisé une première fois pour obtenir une formule pour l'invariant alpha d'un fibré en droite ample sur une compactification de groupe Fano. Cette formule est obtenue par le calcul des seuils log canoniques des métriques hermitiennes invariantes à courbure positive, et induit, dans le cas particulier des variétés toriques, un résultat obtenu auparavant, figurant dans l'article par ailleurs inclus en appendice de la thèse.Nous prouvons ensuite le résultat principal en obtenant des estimées $C^0$ le long de la méthode de continuité, en se ramenant à une équation de Monge-Ampèreréelle sur un cône. La condition obtenue est que le barycentre du polytope associé à la compactification de groupe, par rapport à la mesure de Duistermaat-Heckman, doit être dans une zone particulière du polytope. Cette condition peut être vérifiée sur les exemples, donne de nouveaux exemples de variétés deKähler-Einstein Fano, et donne aussi un exemple qui n'admet aucun soliton de Kähler-Ricci. Nous calculons de plus la plus grande borne inférieure de Ricci lorsqu'il n'y a pas de métrique de Kähler-Einstein. / The main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics.
3

Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets.

Battisti, Laurent 10 December 2012 (has links)
L'objet de cette thèse est l'étude de certaines classes de variétés complexes compactes non kählériennes. On regarde d'abord la classe des surfaces de Kato. Étant donnés une surface de Kato minimale S, D le diviseur maximal de S formé des courbes rationnelles de S et ϖ : Š ͢ S le revêtement universel de S, on démontre que Š \ϖ-1 (D) est une variété de Stein. Les variétés LVMB sont la seconde classe de variétés non kählériennes étudiées. Ces variétés complexes sont obtenues en quotientant un ouvert U de Pn par un sous-groupe de Lie fermé G de (C*)n de dimension m. On reformule ce procédé en remplaçant U par la donnée d'un sous-éventail de celui de Pn et G par un sous-espace vectoriel de Rn convenable. On construit ensuite de nouvelles variétés complexes compactes non kählériennes en combinant une méthode due à Sankaran et celle donnant les variétés LVMB. Sankaran considère un ouvert U d'une variété torique dont le quotient par un groupe W discret est une variété compacte. Ici, on munit une certaine variété torique Y de l'action d'un sous-groupe de Lie G de (C*)n de sorte que le quotient X de Y par G soit une variété, puis on quotiente un ouvert de X par un groupe discret W analogue à celui de Sankaran.Enfin, on étudie les variétés OT, une autre classe de variétés non kählériennes, dont on démontre que leur dimension algébrique est nulle. Ces variétés sont obtenues comme quotient d'un ouvert de Cm par le produit semi-direct du réseau des entiers d'une extension de corps finie K de Q et d'un sous-groupe des unités de K bien choisi. / In this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen.

Page generated in 0.0622 seconds