• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the Monge-Ampère equation in optimal transportation problem / CUHK electronic theses & dissertations collection

January 2015 (has links)
The purpose of this thesis is to study the link between the theory of optimal transportation and the fully non-linear elliptic equation of the form [with formula] called the Monge-Ampère equation, where Ω is a bounded domain in Rⁿ. This equation is related to the optimal transportation problem associated with the quadratic cost c(x; y) = x.y, or equivalently the distance squared cost c(x,y) =1/2|x-y|². / The thesis consists of two parts. The first part is a summary of the classical theory about the optimal transportation problem proposed by Monge and Kantorovich, followed by the recent development pioneered by Ma, Trudinger, and Wang on the regularity of solutions. The Monge-Ampère equation satisfied by the solution of the Monge-Kantorovich problem will also be derived. / 本文的目的是研究最佳的運輸理論和定義在Rⁿ上的一個有界域,寫成[附圖]的Monge–Ampère 方程,兩者之間的關繫。這條屬於完全非線性橢圓方程,對於Monge 與Kantorovich 所提出的運輸數學問題中,代入二次函數作為成本函數時所推導出的偏微分方程。 / 本文由兩部分組成。第一部分是總結Monge 與Kantorovich 對於優化運輸數學所作出的貢獻,其後是論述偏微分方程學家Trudinger 與馬氏、王氏對於這個問題所作出的突破由他們的理論中,可以推導上出述的Monge–Ampère 方程。 / 第二部分是顯示第二邊值問題的適定性(存在解和方程解的唯一性)。為了有一個全面的學習,我們首先重溫橢圓方程的古典Schauder 理論。證明的核心部分是推導出邊界條件的傾斜度估計和對二階導數的估計,根據Urbas 所論證的方法。然後應用由Evans 和Krylov 兩者曾證明了有關完全非線性橢圓方程的定理,獲得對二階導數的Schauder 估算。我們證明偏微分方程存在解是運用連續性的方法。最後,我們將討論如何應用二階線性橢圓方程的定理獲得方程解的高階規律性。 / Cheng, Siu Hong. / Thesis M.Phil. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 79-81). / Abstracts also in Chinese. / Title from PDF title page (viewed on 06, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
2

Approximation and Subextension of Negative Plurisubharmonic Functions

Hed, Lisa January 2008 (has links)
<p>In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function <i>u</i> that is defined on a bounded hyperconvex domain Ω in C<i>n</i><i> </i>and has essentially boundary values zero and bounded Monge-Ampère mass, can be approximated by an increasing sequence of functions {<i>u</i><i>j</i>} that are defined on strictly larger domains, has boundary values zero and bounded Monge-Ampère mass. We also generalize this and show that, under the same conditions, the approximation property is true if the function u has essentially boundary values G, where G is a plurisubharmonic functions with certain properties. To show these approximation theorems we use subextension. We show that if Ω_1 and Ω_2 are hyperconvex domains in C<i>n</i> and if u is a plurisubharmonic function on Ω_1 with given boundary values and with bounded Monge-Ampère mass, then we can find a plurisubharmonic function û defined on Ω_2, with given boundary values, such that û <= u on Ω and with control over the Monge-Ampère mass of û.</p>
3

Approximation and Subextension of Negative Plurisubharmonic Functions

Hed, Lisa January 2008 (has links)
In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function u that is defined on a bounded hyperconvex domain Ω in Cn and has essentially boundary values zero and bounded Monge-Ampère mass, can be approximated by an increasing sequence of functions {uj} that are defined on strictly larger domains, has boundary values zero and bounded Monge-Ampère mass. We also generalize this and show that, under the same conditions, the approximation property is true if the function u has essentially boundary values G, where G is a plurisubharmonic functions with certain properties. To show these approximation theorems we use subextension. We show that if Ω_1 and Ω_2 are hyperconvex domains in Cn and if u is a plurisubharmonic function on Ω_1 with given boundary values and with bounded Monge-Ampère mass, then we can find a plurisubharmonic function û defined on Ω_2, with given boundary values, such that û &lt;= u on Ω and with control over the Monge-Ampère mass of û.
4

Equations de Monge-Ampère complexes paraboliques / Parabolic complex Monge Ampère equations

Do, Hoang Son 29 September 2015 (has links)
Le but de cette thèse est de contribuer à la compréhension des équations de Monge-Ampère complexes paraboliques sur des domaines de Cn. Cette équation a un lien étroit avec le flot de Kähler-Ricci. Notre étude se concentre sur les cas où la condition initiale n'est pas régulière. Nous voulons démontrer l'existence de solutions satisfaisant la continuité jusqu'à la frontière et jusqu'au temps initial. / The aim of this thesis is to make a contribution to understanding parabolic complex Monge-Ampère equations on domains of Cn. Our study is centered around cases where the initial condition is irregular. We want to prove the existence of solutions which satisfies continuity up to the boundary and continuity up to the initial time.
5

Hyperbolic Monge-Ampère Equation

Howard, Tamani M. 08 1900 (has links)
In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
6

Flots de Monge-Ampère complexes sur les variétés hermitiennes compactes / Complex Monge-Ampère flows on compact Hermitian manifolds

Tô, Tat Dat 29 June 2018 (has links)
Dans cette thèse nous nous intéressons aux flots de Monge-Ampère complexes, à leurs généralisations et à leurs applications géométriques sur les variétés hermitiennes compactes. Dans les deux premiers chapitres, nous prouvons qu'un flot de Monge-Ampère complexe sur une variété hermitienne compacte peut être exécuté à partir d'une condition initiale arbitraire avec un nombre Lelong nul en tous points. En utilisant cette propriété, nous con- firmons une conjecture de Tosatti-Weinkove: le flot de Chern-Ricci effectue une contraction chirurgicale canonique. Enfin, nous étudions une généralisation du flot de Chern-Ricci sur des variétés hermitiennes compactes, le flot de Chern-Ricci tordu. Cette partie a donné lieu à deux publications indépendantes. Dans le troisième chapitre, une notion de C -sous-solution parabolique est introduite pour les équations paraboliques, étendant la théorie des C -sous-solutions développée récem- ment par B. Guan et plus spécifiquement G. Székelyhidi pour les équations elliptiques. La théorie parabolique qui en résulte fournit une approche unifiée et pratique pour l'étude de nombreux flots géométriques. Il s'agit ici d'une collaboration avec Duong H. Phong (Université Columbia ) Dans le quatrième chapitre, une approche de viscosité est introduite pour le problème de Dirichlet associé aux équations complexes de type hessienne sur les domaines de Cn. Les arguments sont modélisés sur la théorie des solutions de viscosité pour les équations réelles de type hessienne développées par Trudinger. En conséquence, nous résolvons le problème de Dirichlet pour les équations de quotient de hessiennes et lagrangiennes spéciales. Nous établissons également des résultats de régularité de base pour les solutions. Il s'agit ici d'une collaboration avec Sl-awomir Dinew (Université Jagellonne) et Hoang-Son Do (Institut de Mathématiques de Hanoi). / In this thesis we study the complex Monge-Ampère flows, and their generalizations and geometric applications on compact Hermitian manifods. In the first two chapters, we prove that a general complex Monge-Ampère flow on a compact Hermitian manifold can be run from an arbitrary initial condition with zero Lelong number at all points. Using this property, we confirm a conjecture of Tosatti- Weinkove: the Chern-Ricci flow performs a canonical surgical contraction. Finally, we study a generalization of the Chern-Ricci flow on compact Hermitian manifolds, namely the twisted Chern-Ricci flow. This part gave rise to two independent publications. In the third chapter, a notion of parabolic C -subsolution is introduced for parabolic non-linear equations, extending the theory of C -subsolutions recently developed by B. Guan and more specifically G. Székelyhidi for elliptic equations. The resulting parabolic theory provides a convenient unified approach for the study of many geometric flows. This part is a joint work with Duong H. Phong (Columbia University) In the fourth chapter, a viscosity approach is introduced for the Dirichlet problem associated to complex Hessian type equations on domains in Cn. The arguments are modelled on the theory of viscosity solutions for real Hessian type equations developed by Trudinger. As consequence we solve the Dirichlet problem for the Hessian quotient and special Lagrangian equations. We also establish basic regularity results for the solutions. This part is a joint work with Sl-awomir Dinew (Jagiellonian University) and Hoang-Son Do (Hanoi Institute of Mathematics).
7

Métriques de Kähler-Einstein sur les compactifications de groupes / Kähler-Einstein metrics on group compactifications

Delcroix, Thibaut 12 October 2015 (has links)
Le résultat principal de cette thèse est l'obtention d'une condition nécessaire et suffisante pour l'existence d'une métrique de Kähler-Einstein sur une compactification bi-équivariante lisse et Fano d'un groupe complexe réductif connexe. Ces variétés comprennent les variétés toriques et les compactifications magnifiques de groupes semisimples adjoints.Dans la première partie de ce travail sont développés les outils nécessaires à l'étude de l'existence de métriques de Kähler-Einstein sur ces variétés. Nous calculons en particulier la Hessienne complexe d'une fonction $Ktimes K$-invariante sur la complexification d'un groupe compact $K$. Nous associonségalement, à toute métrique invariante à courbure positive sur un fibré linéarisé ample sur une compactification de groupe, une fonction convexe dont le comportement asymptotique est prescrit. Ceci est utilisé une première fois pour obtenir une formule pour l'invariant alpha d'un fibré en droite ample sur une compactification de groupe Fano. Cette formule est obtenue par le calcul des seuils log canoniques des métriques hermitiennes invariantes à courbure positive, et induit, dans le cas particulier des variétés toriques, un résultat obtenu auparavant, figurant dans l'article par ailleurs inclus en appendice de la thèse.Nous prouvons ensuite le résultat principal en obtenant des estimées $C^0$ le long de la méthode de continuité, en se ramenant à une équation de Monge-Ampèreréelle sur un cône. La condition obtenue est que le barycentre du polytope associé à la compactification de groupe, par rapport à la mesure de Duistermaat-Heckman, doit être dans une zone particulière du polytope. Cette condition peut être vérifiée sur les exemples, donne de nouveaux exemples de variétés deKähler-Einstein Fano, et donne aussi un exemple qui n'admet aucun soliton de Kähler-Ricci. Nous calculons de plus la plus grande borne inférieure de Ricci lorsqu'il n'y a pas de métrique de Kähler-Einstein. / The main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics.
8

Théorie du pluripotentiel et problèmes d' équidistribution / Pluripotential theory and equidistribution problems

Vu, Duc Viet 13 June 2017 (has links)
Cette thèse porte sur la théorie du pluripotentiel et des problèmes d'équidistribution. Elle consiste en 4 chapitres. Le premier chapitre se consarce à l'étude de la régularité de la solution de l'équation de Monge-Ampère complexe sur une variété kahlérienne compacte X. Plus précisement, à l'aide des outils de la géométrie Cauchy-Riemann, on montre que la dernière équation possède une (unique) solution holdérienne pour une large classe géométrique de mesures de probabilités supportées par des sous-variétés réelles de X. Dans le chapitre 2, on étudie l'intersection des courants positifs fermés de grand bidegré. On y prouve que le produit extérieur de deux courants positifs fermés dont l'un possède un superpotentiel continu est positif fermé. Ceci généralise un résultat classique pour les courants de bidegré (1,1). Les deux chapitres suivants sont des applications de la théorie du pluripotentiel à des problèmes d'équidistribution. Dans le chapitre 3, on donne une vitesse explicite de convergence pour l'équidistribution des points de Fekete dans un compact K de l'espace euclidien à bord lisse par morceaux vers la mesure d'équilibre de K. Ici, les points de Fekete sont des bons points dans le problème d'interpolation d'une fonction continue sur K par des polynômes. Un tel contrôle de vitesse est crucial en pratique qu'on utilise les points de Fekete. La thèse se termine par le chapitre 4 où on prouve un analogue de la loi de Weyl pour les résonances d'un opérateur de Schodinger générique sur l'espace euclidien de dimension impair. Les résonances sont des objets centraux dans l'étude des opérateurs de Schrodinger. Elles jouent un rôle similaire à celui des valeurs propres dans le cadre compact. / This thesis concerns the pluripotential theory and equidistribution problems. It consists of 4 chapters. The first chapter is dedicated to the study of the regularity of the solution of the complexe Monge-Ampère equation on a compact Kahler manifold X. More precisely, using tools from the Cauchy-Riemann geometry, we prove that the last equation possesses a unique Holder continuous solution for a large geometric class of probability measures supported on real submanifolds of X. In the chapter 2, we study the intersecton of positive closed currents of higher bidegree. We prove there that the wedge product of two such currents one of which has a continuous superpotential est closed and positive. This property generalises a classical result for currents of bidegree (1,1). The next two chapters are applications of the pluripotential theory to equidistribution problems. In the chapter 3, we give an explicit speed of convergence for the equidistribution of Fekete's points in a compact subset K of the Euclidean space with piecewise smooth boundary toward the equilibrium measure of K. Here, the Fekete's points are good points for the interpolation problem of continuous functions by polynomials on K. A such control of speed is crucial in practice when ones use Fekete's points. The thesis is ended by the chapter 4 where we prove an analogue of Weyl's law for the resonances of a generic Schrodinger operator on an Euclidean space of odd dimension. The resonances are central objects in the research of Schrodinger operators. They play a similar role to that of eigenvalues in the compact setting.
9

Weak solutions to a Monge-Ampère type equation on Kähler surfaces

Rao, Arvind Satya 01 May 2010 (has links)
In the context of moment maps and diffeomorphisms of Kähler manifolds, Donaldson introduced a fully nonlinear Monge-Ampère type equation. Among the conjectures he made about this equation is that the existence of solutions is equivalent to a positivity condition on the initial data. Weinkove later affirmed Donaldson's conjecture using a gradient flow for the equation in the space of Kähler potentials of the initial data. The topic of this thesis is the case when the initial data is merely semipositive and the domain is a closed Kähler surface. Regularity techniques for degenerate Monge-Ampère equations, specifically those coming from pluripotential theory, are used to prove the existence of a bounded, unique, weak solution. With the aid of a Nakai criterion, due to Lamari and Buchdahl, it is shown that this solution is smooth away from some curves of negative self-intersection.
10

The plurisubharmonic Mergelyan property

Hed, Lisa January 2012 (has links)
In this thesis, we study two different kinds of approximation of plurisubharmonic functions. The first one is a Mergelyan type approximation for plurisubharmonic functions. That is, we study which domains in C^n have the property that every continuous plurisubharmonic function can be uniformly approximated with continuous and plurisubharmonic functions defined on neighborhoods of the domain. We will improve a result by Fornaess and Wiegerinck and show that domains with C^0-boundary have this property. We will also use the notion of plurisubharmonic functions on compact sets when trying to characterize those continuous and plurisubharmonic functions that can be approximated from outside. Here a new kind of convexity of a domain comes in handy, namely those domains in C^n that have a negative exhaustion function that is plurisubharmonic on the closure. For these domains, we prove that it is enough to look at the boundary values of a plurisubharmonic function to know whether it can be approximated from outside. The second type of approximation is the following: we want to approximate functions u that are defined on bounded hyperconvex domains Omega in C^n and have essentially boundary values zero and bounded Monge-Ampère mass, with increasing sequences of certain functions u_j that are defined on strictly larger domains. We show that for certain conditions on Omega, this is always possible. We also generalize this to functions with given boundary values. The main tool in the proofs concerning this second approximation is subextension of plurisubharmonic functions.

Page generated in 0.0411 seconds