1 |
Finite element modelling of LV transformer winding to simulate dynamic events occurring under short circuit : In Ansys MechanicalBikkina, Madhu Venkata Sri Prudhvi January 2020 (has links)
The ability to withstand a short circuit is the most essential feature of a power transformer. The most important reason to design short-circuits proof transformers is to ensure the reliability of the power grid (avoiding black outs etc.) and safety (fire and explosion in case of failure). During short circuit, the most effected winding is the LV winding due to the flow high currents even during the normal working condition. So during a short circuit large forces are generated which act on the winding and these forces can reach hundreds of tons in fraction of a second, so the transformer must be properly designed in order to withstand these forces or the transformer can fail in different ways. One of the possible failure modes called “Spiraling” is discussed and analyzed in this thesis. Spiraling Occurs when the LV winding twists tangentially in the opposite direction at the ends due to radial short circuit forces. From literature study the transient forces acting on the winding during a 3-phase short circuit was determined and these transient forces were used to perform simulations on the model. The axial and radial forces applied on the model were such that it has a uniform magnitude per each turn. Various analysis was performed on the model which includes the Static, Modal and Transient Structural analysis in Ansys Workbench and each analysis involved parametric analysis where the deformations and the torsional mode shapes were determined
|
Page generated in 0.0158 seconds