• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 12
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Collagen scaffolds for tissue engineering : the relationship between microstructure, fluid dynamics, mechanics and scaffold deformation

Mohee, Lakshana January 2018 (has links)
Collagen scaffolds are porous structures which are used in bioreactors and in a wide range of tissue engineering applications. In these contexts, the scaffolds may be subjected to conditions in which fluid is forced through the structure and the scaffold is simultaneously compressed. It is clear that fluid transport within collagen scaffolds, and the inter-relationships between permeability, scaffold structure, fluid pressure and scaffold deformation are of key importance. However, these relationships remain poorly understood. In this thesis, a series of isotropic collagen structures were produced using a freeze-drying technique from aqueous slurry concentrations 0.5, 0.75 and 1 wt%, and fully characterised using X-ray micro-tomography and compression testing. It was found that collagen wt% influenced structural parameters such as pore size, porosity, relative density and mechanical properties. Percolation theory was used to investigate the pore interconnectivity of each scaffold. Structures with lower collagen fraction resulted in larger percolation diameters, but lower mechanical stiffness. Aligned collagen scaffolds were also produced by altering the freeze-drying protocol and using different types of mould materials and designs. It was found that a polycarbonate mould with stainless base resulted in vertically aligned structures with low angular variation. When compared with isotropic scaffolds from slurry of the same concentration, aligned scaffolds had a larger percolation diameter. Tortuosity was used as a mathematical tool to characterise the interconnected pathways within each porous structure. The effect of the size of the region of interest (ROI) chosen and the size of the virtual probe particle used in the analysis on the values of tortuosity calculated were determined and an optimised calculation methodology developed. Increasing the collagen fraction within isotropic scaffolds increased the tortuosity, and aligned structures had smaller tortuosity values than their isotropic counterparts. Permeability studies were conducted using two complementary experimental rigs designed to cover a range of pressure regimes and the results were compared with predictions from mathematical models and computational simulations. At low pressures, it was found that the lower collagen fraction structures, which had more open morphologies, had higher permeabilities. Alignment of the structure also enhanced permeability. The scaffolds all experienced deformation at high pressures resulting in a restriction of fluid flow. The lower collagen fraction scaffolds experienced a sharper decrease in permeability with increased pressure and aligned structures were more responsive to deformation than their isotropic counterparts. The inter-relationships between permeability, scaffold structure, fluid pressure and deformation of collagen scaffolds were explored. For isotropic samples, permeability followed a broad $(1- \epsilon)^2$ behaviour with strain as predicted by a tetrakaidecahedral structural model, with the constant of proportionality changing with collagen fraction. In contrast, the aligned structures did not follow this behaviour with the permeability dropping much more sharply in the early stages of compression. Open-cell polyurethane (PU) foams, sometimes used as dressings in wound healing applications, are often compared with collagen scaffolds in permeability models and were used in this thesis as a comparison structure. The foam had a higher permeability than the scaffolds due to its larger pore sizes and higher interconnectivity. In the light of the effects of compression on permeability, the changes in porous structure with compression were explored in isotropic and aligned 0.75 wt% scaffolds. Unlike the fluid flow experiments, these experiments were carried out in the dry state. Deformation in simple linear compression and in step-wise compression was studied, and the stress relaxation behaviour of the scaffolds characterised. A methodology was developed to characterise the structural changes accompanying compression using X-ray micro-tomography with an in situ compression stage. The methodology accounted for the need for samples to remain unchanged during the scan collection period for stable image reconstruction. The scaffolds were studied in uniaxial compression and biaxial compression and it was found that pore size and percolation diameter decreased with increasing compressive strain, while the tortuosity increased. The aligned structure was less affected than the isotropic at low compressions, in contrast to the results from the permeability study in which the aligned structure was more responsive to strain. This suggests that the degree of hydration may affect the structural changes observed. The insights gained in this study of the inter-relationships between microstructure, fluid dynamics and deformation in collagen scaffolds are of relevance to the informed design of porous structures for medical applications.
22

Simulation and Experiments to Understand the Manufacturing Process, Microstructure and Transport Properties of Porous Electrodes

Forouzan, Mohammad Mehdi 01 April 2018 (has links)
Battery technology is a great candidate for energy storage applications. The need for high-performance and cost-effective batteries has motivated researchers to put much effort into improving battery performance. In this work, we attempt to understand the elements that affect the microstructure and performance of two battery systems. The first part of this work focuses on the investigation of transport and structural properties of porous electrodes in an alkaline electrolyte. A DC polarization method was deployed for tortuosity measurements. An apparatus was designed to flow specified current through and measure the voltage drop over the porous electrodes. Using a modified Ohm's law, effective diffusion coefficient and associated tortuosity were determined. Multiple compositions (different types and amounts of conductive additives) were tested to understand the effects of composition on the transport properties. As a validation and to further understand the tests, a model was developed and used for data analysis. The second part of this dissertation describes simulations of the manufacturing process of a Li-ion electrode. LAMMPS, a particle simulator, was used for this meso-scale particle-based simulation. The interactions between particles were understood by model-experiment comparisons of the macroscopic properties such as viscosity of the slurry and elasticity of the dried film. The microstructure created by this simulation was consistent with the one we observed in SEM/ FIB images. Although the emphasis was the drying process in this part, some preliminary coating and calendering simulations are presented. Finally, the effects of electrode heterogeneity were investigated by a Newman-type model and tomographic images. An electronic conductivity map was initially generated over a Li-ion cathode. Then SEM/FIB images of specified high, middle, and low conductivity regions were taken to confirm heterogeneity. For modeling purposes, three regions of high, middle, and low ionic resistance were considered connected in parallel, representing the real electrode heterogeneity. Multiple cases of heterogeneities such as non-uniform ionic resistance and active material loading at low, middle, and high charge-discharge rates were studied. The results show that higher rates increase non-uniformities of dependent properties such as temperature, current density, positive and negative electrodes states of charge, and charge and discharge capacities especially in charging cases.
23

Sulfur Diffusion Into Softwood Chips

Smith, Gregory Douglas 28 November 2005 (has links)
Environmental concerns and cost reduction have been the focus of pretreatment and extended delignification in Kraft pulping for some time now. Previous work has looked at the diffusion of tritiated water into softwood chips. This thesis looks at the diffusion of Na2S into southern pine softwood chips. Two size fractions were used. The measured diffusion data were compared to the equilibrium of mixing between the HS ion and water alone. Since pine is porous, effective diffusivities were calculated for each size fraction using a 1-dimensional model. Tortuosities were then calculated for the HS / pine wood system. These diffusivities are compared to values previously obtained for tritiated water.
24

Relations microstructure-fissuration-perméabilité dans les milieux granulaires cimentés. / Microstructure-fracture-permeability relations in cemented granular materials.

Affes, Rafik 06 December 2012 (has links)
Ce travail de thèse est consacré à l'étude de la corrélation entre la microstructure des matériaux granulaires cimentés, la morphologie des fissures qui peuvent y apparaître et leur perméabilité apparente. Une approche numérique par discrétisation sur réseau a permis de prendre en compte la structure polyphasique hétérogène de ces matériaux et d'étudier les mécanismes qui contrôlent leur comportement et leur rupture. Trois régimes de rupture ont été identifiés en fonction de la fraction volumique de la phase cimentaire et de l'adhésion aux interfaces inclusions/matrice cimentaire. Dans le cadre de la sûreté nucléaire, et dans une optique d'analyse d'étanchéité sur des bétons fissurés, une méthodologie de génération de microstructures représentatives du béton, combinant les fractions volumiques des phases et les distributions des tailles des grains, a été proposée. Cette méthodologie permet d'analyser le réseau de fissures qui peut y apparaitre sous chargement en fonction de la microstructure. En particulier, la tortuosité des fissures est analysée en fonction de la fraction volumique des inclusions et de la distribution de leurs diamètres. Enfin, la perméabilité apparente des des fissures a été étudiée par la simulation de l'écoulement d'un liquide par la methode Lattice Boltzmann. Une corrélation microstructure-tortuosité-perméabilité a été ainsi obtenue. Les outils de modélisation et d'analyse proposés sont suffisamment génériques pour permettre de prendre en compte la complexité microstructurelle d'autres types de matériaux polyphasiques et leurs évolutions. / In this work, we investigate the relationships between the microstructure of cemented granular materials, morphology of cracks that may appear under tensile loading and their apparent permeability. In order to simulate the complexity of the multiphase heterogeneous structure of these materials, a numerical approach based on a lattice discretization was developed and used to study the mechanisms that control their behavior and rupture. Three distinct regimes of crack propagation were evidenced in terms of the combined influence of the matrix volume fraction and particle/matrix adherence. In the context of nuclear safety and in view of analyzing cracked concrete toughness, a methodology is proposed for generating representative microstructures with controlled phase volume fractions and particle size distributions. The cracks obtained under tensile loading are analyzed and a relationship is obtained between the microstructure of concrete and the tortuosity of the cracks. The permeability of cracked numerical microstructures was obtained by the simulation of liquid flow through the cracks by means of the Lattice Boltzmann method. Finally, a microstructure-tortuosity-permeability relation is proposed. The modeling and analysis tools developed in this work are generic enough to be applied to other complex multiphase heterogeneous materials.
25

Influence des conditions d'interfaces d'un milieu poreux saturé sur la propagation des ondes ultrasonores : analyses acoustique et diélectrique / Influence of the interface conditions of a saturated porous medium on the propagation of ultrasonic waves : acoustic and dielectric analysis

Graja, Fatma 16 October 2017 (has links)
Ce travail de thèse rentre dans le cadre d'une collaboration entre l'université de Sfax et l'université du Maine. La thèse intitulée "Influence des conditions d’interfaces d’un milieu poreux saturé sur la propagation des ondes ultrasonores : analyse acoustique et diélectrique". Le travail présenté dans ce mémoire de thèse étudie les mécanismes pouvant se reproduire dans un milieu poreux saturé par un fluide incompressible, lorsqu'il est soumis à un gradient de pression pour l'étude acoustique, et un gradient de champs électromagnétique pour l'analyse diélectrique.De ce fait le présent mémoire s'intéresse à présenter deux techniques de caractérisation :i) La caractérisation acoustique où la théorie de Biot a été adoptée pour comprendre les mécanismes de la propagation des ondes ultrasonores dans les matériaux poreux saturés et étudier l'influence de changement des conditions d'interfaces sur les coefficients de réflexion et de transmission. Le cas de présence d'un défaut plan dans le volume du matériau a été traité. Dans le même objectif, l'étude de l'influence de la présence de plusieurs inclusions sphériques sur lamodification des lignes de champs de vitesses a été présentée en proposant un modèle de tortuosité adapté selon la nature de l'inclusion et le milieu poreux hôte (homogénéité et l'anisotropie).ii) L'analyse diélectrique qui permet de décrire la structure interne et l'interaction entre le solide et le fluide saturant. Des mesures diélectriques ont été effectuées sur des céramiques de silice poreuse identiques à celle utilisée lors de la caractérisation ultrasonore, afin d’étudier l'influence de l'état des surfaces latérales de l'échantillon sur l'interaction entre le fluide saturant et les surfaces intérieures de la structure poreuse.Les résultats permettent de mettre en évidence une analogie entre les comportements de l'inclusion dans le champ de vitesse du fluide et celui d'une sphère diélectrique dans un champs électrique uniforme. Des expériences acoustiques et des mesures diélectriques (spectroscopie) ont été réalisées et comparées aux simulations numériques et aux modèles théoriques dans les deux parties d'étude. / This work is part of a collaboration between the University of Sfax and the University of Maine. The thesis entitled "Influence of the interface conditions of a saturated porous medium on the propagation of ultrasonic waves: acoustic and dielectric analysis". The work presented in this dissertation examines theme chanisms that can be reproduced in a porous medium saturated by an incompressible fluid when subjected to a pressure gradient for the acoustic studyand an electromagnetic field gradient for the dielectricstudy. Consequently, the present paper is interested in presenting two techniques of characterization:i) Acoustic characterization where Biot's theory was adopted to understand the mechanisms of propagation of ultrasonic waves in saturated porous materials and to study the influence of changing interface conditions onreflection and transmission coefficients. The presence of a flat defect in the volume of the material has be entreated. The study of the influence of the presence of several spherical inclusions on the modification of the lines of velocity fields was presented by proposing a model of tortuosity adapted according to the nature of the inclusion and the porous medium host (homogeneityand anisotropy).ii) The dielectric analysis which allows to describe the internal structure and the interaction between the solidand the saturating fluid. Dielectric measurements were carried out on porous silica ceramics identical to thoseused in ultrasonic characterization in order to study the influence of the state of the lateral surfaces of the sample on the interaction between the saturating fluid and the surfaces of the porous structure.The results make it possible to demonstrate an analogy between the behavior of the inclusion in the velocity field of the fluid and that of a dielectric sphere in a uniformelectric field. Acoustic experiments and dielectric measurements (spectroscopy) were carried out and compared with numerical simulations and theoretical models in both parts of the study.
26

Microstructure Changes In Solid Oxide Fuel Cell Anodes After Operation, Observed Using Three-Dimensional Reconstruction And Microchemical Analysis

Parikh, Harshil R. 09 February 2015 (has links)
No description available.
27

Simulation study on PEM fuel cell gas diffusion layers using X-ray tomography based Lattice Boltzmann method

Liu, Yu January 2011 (has links)
The Polymer Electrolyte Membrane (PEM) fuel cell has a great potential in leading the future energy generation due to its advantages of zero emissions, higher power density and efficiency. For a PEM fuel cell, the Membrane-Electrode Assembly (MEA) is the key component which consists of a membrane, two catalyst layers and two gas diffusion layers (GDL). The success of optimum PEM fuel cell power output relies on the mass transport to the electrode especially on the cathode side. The carbon based GDL is one of the most important components in the fuel cell since it has one of the basic roles of providing path ways for reactant gases transport to the catalyst layer as well as excess water removal. A detailed understanding and visualization of the GDL from micro-scale level is limited by traditional numerical tool such as CFD and experimental methods due to the complex geometry of the porous GDL structural. In order to take the actual geometry information of the porous GDL into consideration, the x-ray tomography technique is employed which is able to reconstructed the actual structure of the carbon paper or carbon cloth GDLs to three-dimensional digital binary image which can be read directly by the LB model to carry out the simulation. This research work contributes to develop the combined methodology of x-ray tomography based the three-dimensional single phase Lattice Boltzmann (LB) simulation. This newly developed methodology demonstrates its capacity of simulating the flow characteristics and transport phenomena in the porous media by dealing with collision of the particles at pore-scale. The results reveal the heterogeneous nature of the GDL structures which influence the transportation of the reactants in terms of physical parameters of the GDLs such as porosity, permeability and tortuosity. The compression effects on the carbon cloth GDLs have been investigated. The results show that the c applied compression pressure on the GDLs will have negative effects on average pore size, porosity as well as through-plane permeability. A compression pressure range is suggested by the results which gives optimum in-plane permeability to through-plane permeability. The compression effects on one-dimensional water and oxygen partial pressures in the main flow direction have been studied at low, medium and high current densities. It s been observed that the water and oxygen pressure drop across the GDL increase with increasing the compression pressure. Key Words: PEM fuel cell, GDL, LB simulation, SPSC, SPMC, x-ray tomography, carbon paper, carbon cloth, porosity, permeability, degree of anisotropy, tortuosity, flow transport.
28

Numerical modelling of flow through packed beds of uniform spheres / Abraham Christoffel Naudé Preller

Preller, Abraham Christoffel Naudé January 2011 (has links)
This study addressed the numerical modelling of flow and diffusion in packed beds of mono-sized spheres. Comprehensive research was conducted in order to implement various numerical approaches in explicit1 and implicit2 simulations of flow through packed beds of uniform spheres. It was noted from literature that the characterization of a packed bed using porosity as the only geometrical parameter is inadequate (Van Antwerpen, 2009) and is still under much deliberation due to the lack of understanding of different flow phenomena through packed beds. Explicit simulations are not only able to give insight into this lack of understanding in fluid mechanics, but can also be used to develop different flow correlations that can be implemented in implicit type simulations. The investigation into the modelling approach using STAR-CCM+®, presented a sound modelling methodology, capable of producing accurate numerical results. A new contact treatment was developed in this study that is able to model all the aspects of the contact geometry without compromising the computational resources. This study also showed, for the first time, that the LES (large eddy simulation) turbulence model was the only model capable of accurately predicting the pressure drop for low Reynolds numbers in the transition regime. The adopted modelling approach was partly validated in an extensive mesh independency test that showed an excellent agreement between the simulation and the KTA (1981) and Eisfeld and Schnitzlein (2001) correlations' predicted pressure drop values, deviating by between 0.54% and 3.45% respectively. This study also showed that explicit simulations are able to accurately model enhanced diffusion due to turbulent mixing, through packed beds. In the tortuosity study it was found that the tortuosity calculations were independent of the Reynolds number, and that the newly developed tortuosity tests were in good agreement with techniques used by Kim en Chen (2006), deviating by between 2.65% and 0.64%. The results from the TMD (thermal mixing degree) tests showed that there appears to be no explicit link between the porosity and mixing abilities of the packed beds tested, but this could be attributed to relatively small bed sizes used and the positioning and size of the warm inlet. A multi-velocity test showed that the TMD criterion is also independent of the Reynolds number. It was concluded that the results from the TMD tests indicated that more elaborate packed beds were needed to derive applicable conclusions from these type of mixing tests. The explicit BETS (braiding effect test section) simulation results confirmed the seemingly irregular temperature trends that were observed in the experimental data, deviating by between 5.44% and 2.29%. From the detail computational fluid dynamics (CFD) results it was possible to attribute these irregularities to the positioning of the thermocouples in high temperature gradient areas. The validation results obtained in the effective thermal conductivity study were in good agreement with the results of Kgame (2011) when the same fitting techniques were used, deviating by 5.1%. The results also showed that this fitting technique is highly sensitive for values of the square of the Pearson product moment correlation coefficient (RSQ) parameter and that the exclusion of the symmetry planes improved the RSQ results. It was concluded that the introduction of the new combined coefficient (CC) parameter is more suited for this type of fitting technique than using only the RSQ parameter. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012
29

TAMANHOS ELEMENTARES REPRESENTATIVOS DE ATRIBUTOS DO SOLO VIA ATENUAÇÃO DE RAIOS GAMA E TOMOGRAFIA COMPUTADORIZADA

Borges, Jaqueline Aparecida Ribaski 11 September 2015 (has links)
Made available in DSpace on 2017-07-21T19:25:49Z (GMT). No. of bitstreams: 1 Jaqueline Ap Borges.pdf: 4346896 bytes, checksum: 7cddb136f61196f7c1bd6d777eaee0bc (MD5) Previous issue date: 2015-09-11 / In this study, the Computed Tomography (CT) and gamma-ray attenuation (GRA) techniques were used in the investigation of representative sample sizes for attributes related to soil structure. First of all, the representative elementary length (REL) for experimental measurements of soil mass attenuation coefficient (μes), of samples from a sandy and a clayey soil, was analyzed. The study was conducted with two radioactive sources (241Am and 137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). From these analyzes, it was possible to identify an ideal thickness range for each of the studied sources (2-4 cm and 12-15 cm for the sources of 241Am and 137Cs, respectively). The application of such results in representative elementary area evaluations, in clayey soil clods via CT, indicated that experimental soil mass attenuation coefficient average values obtained for x>4 cm and source 241Am might induce the use of samples which are not large enough for soil bulk density evaluations. Subsequently, μCT images with a total volume of 39×39×33 mm3 and spatial resolution of 60 μm were used for macroporous system morphological characterization of a Rhodic Ferralsol with clayey texture, under no-till (NT) and conventional till (CT) systems. Attributes as macroporosity (MAP), number of macropores (NMAP), tortuosity (τ) and connectivity (C) of the pores were assessed. The C degree was estimated based on the Euler-Poincaré characteristic (EPC). Once 3D images enable the study of these attributes in different sample volumes, the proposed study is ideal for the analysis of representative elementary volume (REV). Usually, the selection of subvolumes for REV analysis occurs concentrically to a small volume or in adjacent positions. Here, we introduced a new method for selecting the positions of subvolumes, which are randomly chosen within the total image volume (random selection). It was observed that higher fluctuations in amplitude of each analyzed property values occurred for smaller subvolumes and random selection. When these positions are randomly selected, all regions of the sample have the same probability of occurrence. Thus, the subvolumes can be selected from regions that exhibit similar characteristics, or which are quite different from each other. The results allowed the study of each of these attributes in function of the analyzed sample volume. Such analysis enabled the identification of a REV for MAP and τ measurements for both soils. However, NMAP and CEP showed no indication of stabilization within the total sample volume analyzed (39×39×33 mm3). From this study, it was possible to detect the influence of each management systems (NT and CT) on the macroporous system. In general, results obtained for soil under PC showed higher regularity, which is probably due to its homogenization induced by the plowing, conducted twice a year. / No presente estudo, as técnicas de tomografia computadorizada (TC) e atenuação de raios gama (AGR) foram utilizadas na investigação do tamanho representativo de amostras para atributos referentes à estrutura do solo. Primeiramente, foi analisado o comprimento elementar representativo (CER) de amostras de um solo de textura arenosa e outro de textura argilosa para medidas experimentais do coeficiente de atenuação de massa do solo (μes). O estudo foi realizado com duas fontes radioativas de raios gama (241Am e 137Cs), três aberturas de colimadores circulares (2-4 mm) e 14 espessuras (x) distintas de amostras deformadas de solo (2-15 cm). A partir destas análises foi possível identificar um intervalo de espessura ideal para cada uma das fontes estudadas (2–4 cm e 12–15 cm para as fontes de 241Am e 137Cs, respectivamente). A aplicação dos resultados obtidos para a fonte de 241Am, e solo argiloso, em avaliações de área elementar representativa (AER) para medidas de densidade do solo (ρs) via TC, indicaram que os valores médios de μes para x>4 cm podem induzir ao uso de amostras com tamanho não representativo. Na sequência, imagens de microtomografia de raios X (μTC), com volume total de 39×39×33 mm3 e resolução espacial de 60 μm, foram utilizadas para a caracterização micromorfológica do sistema macroporoso de um Latossolo vermelho de textura argilosa, submetido aos sistemas de manejo de plantio direto (PD) e plantio convencional (PC). Foram analisados atributos físicos como macroporosidade (MAP), número de macroporos (NMAP), tortuosidade (τ) e conectividade (C) dos poros. O grau de C dos poros foi estimado a partir da característica de Euler-Poincaré (CEP). Uma vez que imagens 3D possibilitam o estudo destes atributos em diferentes volumes de amostra, o estudo proposto é ideal para a análise de volumes elementares representativos (VERs). Geralmente, a seleção dos subvolumes para análises de VER se dá concentricamente a um volume de origem ou em posições adjacentes a este. Neste trabalho foi introduzida uma nova forma de seleção da posição dos subvolumes, os quais são selecionados randomicamente dentro do volume total da imagem (seleção aleatória). Observou-se que as maiores amplitudes de flutuações nos valores de cada atributo analisado ocorreram para os subvolumes menores quando selecionados de forma aleatória, em comparação à seleção centralizada. Quando estas posições são selecionadas aleatoriamente, todas as regiões da amostra têm a mesma probabilidade de ocorrência. Com isso, os subvolumes podem ser selecionados em regiões que apresentem características similares, ou então, que sejam muito diferentes umas das outras. Os resultados permitiram o estudo de cada um destes atributos em função do volume de amostra analisado. Tais análises possibilitaram a identificação de um VER para medidas de MAP e τ para os dois solos estudados. No entanto, a NMAP e a CEP não apresentaram indícios de estabilização até o volume total de amostra analisado (39×39×33 mm3). Quanto aos dois sistemas de manejo avaliados (PD e PC), foi possível detectar a influência de cada um deles na estrutura macroporosa do solo. De uma forma geral, o solo sob PC apresentou maior regularidade nos resultados obtidos, o que se deve à homogeneização do mesmo induzida pelo revolvimento do solo realizado duas vezes ao ano.
30

Numerical modelling of flow through packed beds of uniform spheres / Abraham Christoffel Naudé Preller

Preller, Abraham Christoffel Naudé January 2011 (has links)
This study addressed the numerical modelling of flow and diffusion in packed beds of mono-sized spheres. Comprehensive research was conducted in order to implement various numerical approaches in explicit1 and implicit2 simulations of flow through packed beds of uniform spheres. It was noted from literature that the characterization of a packed bed using porosity as the only geometrical parameter is inadequate (Van Antwerpen, 2009) and is still under much deliberation due to the lack of understanding of different flow phenomena through packed beds. Explicit simulations are not only able to give insight into this lack of understanding in fluid mechanics, but can also be used to develop different flow correlations that can be implemented in implicit type simulations. The investigation into the modelling approach using STAR-CCM+®, presented a sound modelling methodology, capable of producing accurate numerical results. A new contact treatment was developed in this study that is able to model all the aspects of the contact geometry without compromising the computational resources. This study also showed, for the first time, that the LES (large eddy simulation) turbulence model was the only model capable of accurately predicting the pressure drop for low Reynolds numbers in the transition regime. The adopted modelling approach was partly validated in an extensive mesh independency test that showed an excellent agreement between the simulation and the KTA (1981) and Eisfeld and Schnitzlein (2001) correlations' predicted pressure drop values, deviating by between 0.54% and 3.45% respectively. This study also showed that explicit simulations are able to accurately model enhanced diffusion due to turbulent mixing, through packed beds. In the tortuosity study it was found that the tortuosity calculations were independent of the Reynolds number, and that the newly developed tortuosity tests were in good agreement with techniques used by Kim en Chen (2006), deviating by between 2.65% and 0.64%. The results from the TMD (thermal mixing degree) tests showed that there appears to be no explicit link between the porosity and mixing abilities of the packed beds tested, but this could be attributed to relatively small bed sizes used and the positioning and size of the warm inlet. A multi-velocity test showed that the TMD criterion is also independent of the Reynolds number. It was concluded that the results from the TMD tests indicated that more elaborate packed beds were needed to derive applicable conclusions from these type of mixing tests. The explicit BETS (braiding effect test section) simulation results confirmed the seemingly irregular temperature trends that were observed in the experimental data, deviating by between 5.44% and 2.29%. From the detail computational fluid dynamics (CFD) results it was possible to attribute these irregularities to the positioning of the thermocouples in high temperature gradient areas. The validation results obtained in the effective thermal conductivity study were in good agreement with the results of Kgame (2011) when the same fitting techniques were used, deviating by 5.1%. The results also showed that this fitting technique is highly sensitive for values of the square of the Pearson product moment correlation coefficient (RSQ) parameter and that the exclusion of the symmetry planes improved the RSQ results. It was concluded that the introduction of the new combined coefficient (CC) parameter is more suited for this type of fitting technique than using only the RSQ parameter. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012

Page generated in 0.0282 seconds