• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 52
  • 52
  • 51
  • 44
  • 18
  • 15
  • 13
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relating the Annihilation Number and the Total Domination Number of a Tree

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 February 2013 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we investigate relationships between the annihilation number and the total domination number of a graph. Let T be a tree of order n<2. We show that γt(T)≤a(T)+1, and we characterize the extremal trees achieving equality in this bound.
2

Relating the Annihilation Number and the Total Domination Number of a Tree

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 February 2013 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we investigate relationships between the annihilation number and the total domination number of a graph. Let T be a tree of order n<2. We show that γt(T)≤a(T)+1, and we characterize the extremal trees achieving equality in this bound.
3

Total Domination Critical and Stable Graphs Upon Edge Removal

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 06 August 2010 (has links)
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.
4

Total Domination Subdivision Numbers of Trees

Haynes, Teresa W., Henning, Michael A., Hopkins, Lora 28 September 2004 (has links)
A set S of vertices in a graph G is a total dominating set of G if every vertex is adjacent to a vertex in S. The total domination number yγ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. Haynes et al. (J. Combin. Math. Combin. Comput. 44 (2003) 115) showed that for any tree T of order at least 3, 1 ≤sdγt (T)≤3. In this paper, we give a constructive characterization of trees whose total domination subdivision number is 3.
5

Total Domination Supercritical Graphs With Respect to Relative Complements

Haynes, Teresa W., Henning, Michael A., Van Der Merwe, Lucas C. 06 December 2002 (has links)
A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. Let G be a connected spanning subgraph of Ks,s, and let H be the complement of G relative to Ks,s; that is, Ks,s, = G ⊕ H is a factorization of Ks,s. The graph G is k-supercritical relative to Ks,s, if γt(G) = k and γ1(G + e) = k - 2 for all e ∈ E(H). Properties of k-supercritical graphs are presented, and k-supercritical graphs are characterized for small k.
6

Total Domination Dot Critical and Dot Stable Graphs.

McMahon, Stephanie Anne Marie 08 May 2010 (has links) (PDF)
Two vertices are said to be identifed if they are combined to form one vertex whose neighborhood is the union of their neighborhoods. A graph is total domination dot-critical if identifying any pair of adjacent vertices decreases the total domination number. On the other hand, a graph is total domination dot-stable if identifying any pair of adjacent vertices leaves the total domination number unchanged. Identifying any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most two. Among other results, we characterize total domination dot-critical trees with total domination number three and all total domination dot-stable graphs.
7

Roman and Total Domination

Chellali, Mustapha, Haynes, Teresa W., Hedetniemi, Stephen T. 04 December 2015 (has links)
A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination numberγt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only ifγt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.
8

Total Domination Stable Graphs Upon Edge Addition

Desormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 28 December 2010 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.
9

Trees With Unique Minimum Paired-Dominating Sets

Chellali, Mustapha, Haynes, Teresa W. 01 October 2004 (has links)
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching. We characterize the trees having unique minimum paired-dominating sets.
10

Progress on the Murty–Simon Conjecture on Diameter-2 Critical Graphs: A Survey

Haynes, Teresa W., Henning, Michael A., van der Merwe, Lucas C., Yeo, Anders 01 October 2015 (has links)
A graph $$G$$G is diameter 2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph G of order n is at most ⌊n2/4⌋ and that the extremal graphs are the complete bipartite graphs K⌊n/2⌋,⌈n/2⌉. We survey the progress made to date on this conjecture, concentrating mainly on recent results developed from associating the conjecture to an equivalent one involving total domination.

Page generated in 0.1257 seconds