• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 62
  • 28
  • 16
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 305
  • 305
  • 112
  • 110
  • 102
  • 75
  • 75
  • 63
  • 51
  • 40
  • 33
  • 31
  • 30
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Studies towards the total synthesis of complex meroterpenoid natural products and derivatives

Rauwolf, Tyler Jonathan 20 September 2023 (has links)
The tree and shrub species belonging to the Myrtaceae family are rich in structurally diverse meroterpenoids which possess anti-cancer, anti-malarial, anti-bacterial, anti-viral, and anti-inflammatory biological activities. Many of the natural products belonging to this family are derived from two common precursors: syncarpic acid and formyl phloroglucinol. The dissertation research described herein is focused on the total synthesis of two subclasses of natural products: syncarpic acid-derived meroterpenoids and formyl phloroglucinol meroterpenoids. The synthetic methodologies disclosed were developed to enrich the chemodiversity of these novel meroterpenoids by providing efficient access to such scaffolds and derivatives. Rhodomyrtusials A–C, the first examples of syncarpic acid-derived sesquiterpene meroterpenoids featuring a unique 6/5/5/9/4 fused pentacyclic ring system, were isolated from Rhodomyrtus tomentosa along with several biogenetically-related dihydropyran isomers. Two bis-furans and one dihydropyran isomer showed acetylcholinesterase (AChE) inhibitory activity. Herein, the bioinspired total syntheses of six isolates were achieved in six steps utilizing a reactive enetrione intermediate generated in situ from a readily available hydroxy-endoperoxide precursor are reported. Further evaluation of alkene reaction partners identified additional modes of reactivity for the enetrione, leading to the production of novel small molecule scaffolds. Furthermore, computational studies have identified a valid asynchronous, concerted pathway leading to the formation of the bis-furan containing natural products. Eucalyptusdimers A−C, three dimeric phellandrene-derived formyl phloroglucinol meroterpenoids featuring an unprecedented, fused skeleton between two phellandrene and two acylphloroglucinol subunits, along with one biogenetically related intermediate eucalyprobusone A, were isolated from the fruits of Eucalyptus robusta. These isolates also showed AChE inhibitory activity. A one-pot, three-component reaction was identified to achieve the synthesis of eucalyprobusone A and subsequent synthetic efforts towards eucalyptusdimers A and B via hetero-Diels Alder (HDA) [4+2] cycloaddition with known terpene, alpha-phellandrene are outlined. Initial efforts failed to promote the desired HDA cycloaddition, which led to alternate exploration of oxidative [4+2] cycloaddition chemistry. Using this revised strategy, the synthesis of several Eucalyptus metabolites including grandinol, euglobal IIc, and euglobal T1 was achieved. Future efforts and synthetic strategies to afford the eucalyptusdimers from these precursors are provided. / 2025-09-20T00:00:00Z
172

A FORMAL TOTAL SYNTHESIS OF BIOXALOMYCIN BETA 2

KANISKAN, H. ÜMIT 29 May 2007 (has links)
No description available.
173

Total Synthesis of The Bidensyneosides; Remarkable Protecting Group Effects in Glycosylation And Synthetic Efforts Towards The Total Synthesis of A Pentaacetylenic Glucoside

Fox, Ryan Michael 09 August 2004 (has links)
No description available.
174

Toward Total Synthesis of (-)-Muironolide A

Clay, Charles Michael 10 August 2017 (has links)
No description available.
175

Synthetic Study of Amphidinolides C, C2, C3, and F: Construction of the C1–C9 and the C10–C25 Building Blocks

Akwaboah, Daniel C. January 2017 (has links)
No description available.
176

Advances in the Total Synthesis of (-)-Muironolide A

Rosa, Kedwin 10 August 2018 (has links)
No description available.
177

Total Synthesis of Ceratamine A & B and Synthesis of Negative Allosteric Modulators of Neuronal Nicotinic Acetylcholine Receptors

Carper, Daniel Jay 01 November 2010 (has links)
No description available.
178

Development of Novel Methods to Prepare Nitrogen and Oxygen Heterocycles

Wray, Brenda Caroline 22 July 2011 (has links)
No description available.
179

Synthetic Tools for the Preparation of Modified Histones

Shimko, John C. 19 December 2011 (has links)
No description available.
180

Addressing Antibiotic Resistance: The Discovery of Novel Ketolide Antibiotics Through Structure Based Design and In Situ Click Chemistry

Glassford, Ian Michael January 2016 (has links)
Antibiotic resistance has become and will continue to be a major medical issue of the 21st century. If not addressed, the potential for a post-antibiotic era could become a reality, one that the world has not been familiar with since the early 1900’s. Multidrug-resistant hospital-acquired bacterial infections already account for close to 2 million cases and 23,000 deaths in the United States, along with 20 billion dollars of additional medical spending each year. The CDC released a report in 2013 regarding the seriousness of antibiotic resistance and providing a snapshot of costs and mortality rates of the most serious antibiotic resistant bacteria, which includes 17 drug resistant bacteria, such as carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus and Staphylococcus aureus, and multidrug-resistant Acinetobacter and Pseudomonas aeruginosa. The development of antibiotic resistance is part of bacteria’s normal evolutionary process and thus impossible to completely stop. To ensure a future where resistant bacteria do not run rampant throughout society, there is a great need for new antibiotics and accordingly, methods to facilitate their discovery Macrolides are a class of antibiotics that target the bacterial ribosome. Since their discovery in the 1950’s medicinal chemistry has created semi-synthetic analogues of natural product macrolides to address poor pharmacokinetics and resistance. Modern X-Ray crystallography has allowed the chemist access to high resolution images of the bacterial ribosome bound to antibiotics including macrolides which has ushered in an era of structure-based design of novel antibiotics. These crystal structures suggest that the C-4 methyl group of third generation ketolide antibiotic telithromycin can sterically clash with a mutated rRNA residue causing loss of binding and providing a structural basis for resistance. The Andrade lab hypothesized that the replacement of this methyl group with hydrogen would alleviate the steric clash and allow the antibiotic to retain activity. To this end, the Andrade lab set out on a synthetic program to synthesize four desmethyl analogues of telithromycin by total synthesis that would directly test the steric clash hypothesis and also provide structure-activity relationships about these methyl groups which have not been assessed in the past. Following will contain highlights of the total synthesis of (-)-4,8,10-didesmethyl telithromycin, (-)-4,10-didesmethyl telithromycin, and (-)-4,8-desmethyl telithromycin and my journey toward the total synthesis of (-)-4-desmethyl telithromycin Traditional combinatorial chemistry uses chemical synthesis to make all possible molecules from various fragments. These molecules then need to be purified, characterized, and tested against the biological target of interest. While high-throughput assay technologies (i.e., automation) has streamlined this process to some extent, the process remains expensive when considering the costs of labor, reagents, and solvent to synthesize, purify, and characterize all library members. Unlike traditional combinatorial chemistry, in situ click chemistry directly employs the macromolecular target to template and synthesize its own inhibitor. In situ click chemistry makes use of the Huisgen cycloaddition of alkyne and azides to form 1,2,3-triazoles, which normally reacts slowly at room temperature in the absence of a catalyst. If azide and alkyne pairs can come together in a target binding pocket the activation energy of the reaction can be lowered and products detected by LC-MS. Compounds found in this way generally show tighter binding than the individual fragments. Described in the second part of this dissertation is the development of the first in situ click methodology targeting the bacterial ribosome. Using the triazole containing third generation ketolide solithromycin as a template we were able to successfully show that in situ click chemistry was able to predict the tightest binding compounds. / Chemistry

Page generated in 0.0694 seconds