• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potencial gravitacional usando mascons e a dinâmica ao redor de corpos irregulares /

Borderes Motta, Gabriel. January 2018 (has links)
Orientador: Othon Cabo Winter / Banca: Ernesto Vieira Neto / Banca: Silvia Maria Giuliatti Winter / Banca: Julio Ignácio Bueno de Camargo / Banca: Teresinha de Jesus Stuchi / Resumo: Em geral, pequenos corpos do sistema solar, como asteroides e cometas, têm uma forma muito irregular, o que afeta significativamente o seu potencial gravitacional, dificultando os estudos da dinâmica ao redor destes corpos. Uma primeira aproximação é a expansão em harmônicos esféricos, onde os termos C20 e o C22 caracterizam a irregularidade do corpo. Usamos essa aproximação em superfícies de secção de Poincaré para estudar as regiões próximas ao planeta anão Haumea, onde foi observado um anel. A partir do mapeamento feito pela técnica de superfície de secção de Poincaré, foi possível identifi- car Famílias de órbitas periódicas e regiões estáveis. Duas Famílias de órbitas periódicas foram destacadas, a primeira uma Família de segundo tipo associada à ressonância 1:3 (Família ressonante) e a segunda uma Família de primeiro tipo (Família central). As simulações indicam que as partículas do anel podem estar em órbitas da Família central. Já a Família ressonante, não pode ser responsável pelo anel devido a excentricidade de suas órbitas e da sua posição. Para simular de forma mais realista a irregularidade de um pequeno corpo, é usada uma melhor aproximação para o cálculo do potencial gravitacional. O modelo de concentração de massa, ou modelo de mascons, é uma aproximação discreta da forma de um corpo, capaz de simular um potencial irregular, assimétrico e tridimensional. A esse modelo é aplicada a superfície de secção de Poincaré, com o objetivo de estudar a dinâmica da região... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In general, small bodies of the Solar system, e.g. asteroids and comets, have a very irregular shape. This feature affects significantly the gravitational potential around these irregular bodies, which hinders dynamical studies. A first approximation is an expansion in spherical harmonics, where C20 and C22 characterize the irregularity of the body. This approach is used on Poincaré surfaces of sections to study regions close to the dwarf planet Haumea. This regions are where the observed ring. By the technique of Poincaré surface of section, it was identified Families of periodic orbits and stable regions. Two Families of periodic orbits were studied, the first Family is a second type associated with the 1:3 resonance (resonant Family) and the second Family is a first type (central Family). During the simulations the ring particles can be in orbits of the central Family. But the resonant Family can not be responsible for the ring due the eccentricity and position of their orbits. In order to more realistically simulation of the irregularity of the body, a better approximation is necessary for the computation of the gravitational potential. The mass concentration model, or mascon model, is a discrete approximation of the shape of a body. This model simulates an irregular, asymmetric and three-dimensional potential. This model was applied in a Poincaré surfaces of section, mainly to study the dynamics of the region close to the asteroid 4179 Toutatis. Four Families of ... (Complete abstract click electronic access below) / Doutor
2

Analysis and Control of Space Systems Dynamics via Floquet Theory, Normal Forms and Center Manifold Reduction

January 2019 (has links)
abstract: It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation. / Dissertation/Thesis / Doctoral Dissertation Systems Engineering 2019
3

Potencial gravitacional usando mascons e a dinâmica ao redor de corpos irregulares / Gravitational potential using mascons and a dynamics around irregular bodies

Borderes-Motta, Gabriel 06 March 2018 (has links)
Submitted by Gabriel Borderes Motta (gabriel_borderes@yahoo.com.br) on 2018-05-08T22:40:01Z No. of bitstreams: 1 Tese.pdf: 94594231 bytes, checksum: 424f474ffb856276cc3c8fc7f0e81790 (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-05-10T13:22:38Z (GMT) No. of bitstreams: 1 borderes-mota_g_dr_guara.pdf: 94594231 bytes, checksum: 424f474ffb856276cc3c8fc7f0e81790 (MD5) / Made available in DSpace on 2018-05-10T13:22:38Z (GMT). No. of bitstreams: 1 borderes-mota_g_dr_guara.pdf: 94594231 bytes, checksum: 424f474ffb856276cc3c8fc7f0e81790 (MD5) Previous issue date: 2018-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Em geral, pequenos corpos do sistema solar, como asteroides e cometas, têm uma forma muito irregular, o que afeta significativamente o seu potencial gravitacional, dificultando os estudos da dinâmica ao redor destes corpos. Uma primeira aproximação é a expansão em harmônicos esféricos, onde os termos C20 e o C22 caracterizam a irregularidade do corpo. Usamos essa aproximação em superfícies de secção de Poincaré para estudar as regiões próximas ao planeta anão Haumea, onde foi observado um anel. A partir do mapeamento feito pela técnica de superfície de secção de Poincaré, foi possível identifi- car Famílias de órbitas periódicas e regiões estáveis. Duas Famílias de órbitas periódicas foram destacadas, a primeira uma Família de segundo tipo associada à ressonância 1:3 (Família ressonante) e a segunda uma Família de primeiro tipo (Família central). As simulações indicam que as partículas do anel podem estar em órbitas da Família central. Já a Família ressonante, não pode ser responsável pelo anel devido a excentricidade de suas órbitas e da sua posição. Para simular de forma mais realista a irregularidade de um pequeno corpo, é usada uma melhor aproximação para o cálculo do potencial gravitacional. O modelo de concentração de massa, ou modelo de mascons, é uma aproximação discreta da forma de um corpo, capaz de simular um potencial irregular, assimétrico e tridimensional. A esse modelo é aplicada a superfície de secção de Poincaré, com o objetivo de estudar a dinâmica da região próxima ao asteroide 4179 Toutatis. Quatro Famílias de órbitas periódicas são destacadas e estudadas. Uma Família é de primeiro tipo e as outras três são de segundo tipo associadas às ressonâncias 3:1, 2:1 e 2:3. Apesar do potencial gravitacional tridimensional ser adotado em uma ferramenta usualmente bidimensional, é possível analisar como um problema bidimensional quando a variação na terceira dimensão é baixa. Estudando em conjunto as superfícies de secção de Poincaré e a variação máxima na terceira dimensão, verifica-se a estabilidade ou não das trajetórias simuladas / In general, small bodies of the Solar system, e.g. asteroids and comets, have a very irregular shape. This feature affects significantly the gravitational potential around these irregular bodies, which hinders dynamical studies. A first approximation is an expansion in spherical harmonics, where C20 and C22 characterize the irregularity of the body. This approach is used on Poincaré surfaces of sections to study regions close to the dwarf planet Haumea. This regions are where the observed ring. By the technique of Poincaré surface of section, it was identified Families of periodic orbits and stable regions. Two Families of periodic orbits were studied, the first Family is a second type associated with the 1:3 resonance (resonant Family) and the second Family is a first type (central Family). During the simulations the ring particles can be in orbits of the central Family. But the resonant Family can not be responsible for the ring due the eccentricity and position of their orbits. In order to more realistically simulation of the irregularity of the body, a better approximation is necessary for the computation of the gravitational potential. The mass concentration model, or mascon model, is a discrete approximation of the shape of a body. This model simulates an irregular, asymmetric and three-dimensional potential. This model was applied in a Poincaré surfaces of section, mainly to study the dynamics of the region close to the asteroid 4179 Toutatis. Four Families of periodic orbits were studied. One of then is a first type and the others were the second type and associated with the resonances 3:1, 2:1 and 2:3. Although the three-dimensional gravitational potential is adopted in a usually two-dimensional tool, it is possible to analyze as a two-dimensional problem when the variation in the third dimension is low. By a analyzing of the Poincaré surfaces of section and a maximum variation in the free dimension together, the stability of the simulated trajectories is measured

Page generated in 0.0718 seconds