Spelling suggestions: "subject:"très haute résolution spatiale"" "subject:"très haute résolution patiale""
1 |
Classification multi-échelle d'images à très haute résolution spatiale basée sur une nouvelle approche texturaleDelahaye, Alexandre January 2016 (has links)
Résumé : Face à l’accroissement de la résolution spatiale des capteurs optiques satellitaires, de nouvelles stratégies doivent être développées pour classifier les images de télédétection. En effet, l’abondance de détails dans ces images diminue fortement l’efficacité des classifications spectrales; de nombreuses méthodes de classification texturale, notamment les approches statistiques, ne sont plus adaptées. À l’inverse, les approches structurelles offrent une ouverture intéressante : ces approches orientées objet consistent à étudier la structure de l’image pour en interpréter le sens. Un algorithme de ce type est proposé dans la première partie de cette thèse. Reposant sur la détection et l’analyse de points-clés (KPC : KeyPoint-based Classification), il offre une solution efficace au problème de la classification d’images à très haute résolution spatiale. Les classifications effectuées sur les données montrent en particulier sa capacité à différencier des textures visuellement similaires.
Par ailleurs, il a été montré dans la littérature que la fusion évidentielle, reposant sur la théorie de Dempster-Shafer, est tout à fait adaptée aux images de télédétection en raison de son aptitude à intégrer des concepts tels que l’ambiguïté et l’incertitude. Peu d’études ont en revanche été menées sur l’application de cette théorie à des données texturales complexes telles que celles issues de classifications structurelles. La seconde partie de cette thèse vise à combler ce manque, en s’intéressant à la fusion de classifications KPC multi-échelle par la théorie de Dempster-Shafer. Les tests menés montrent que cette approche multi-échelle permet d’améliorer la classification finale dans le cas où l’image initiale est de faible qualité. De plus, l’étude effectuée met en évidence le potentiel d’amélioration apporté par l’estimation de la fiabilité des classifications intermédiaires, et fournit des pistes pour mener ces estimations. / Abstract : Classifying remote sensing images is an increasingly difficult task due to the availability of very high spatial resolution (VHSR) data. The amount of details in such images is a major obstacle to the use of spectral classification methods as well as most textural classification algorithms, including statistical methods. However, structural methods offer an interesting alternative to this issue: these object-oriented approaches focus on analyzing the structure of an image in order to interpret its meaning. In the first part of this thesis, we propose a new algorithm belonging to this category: KPC (KeyPoint-based Classification). KPC is based on keypoint detection and analysis and offers an efficient answer to the issue of classifying VHSR images. Tests led on artificial and real remote sensing images have proven its discriminating power.
Furthermore, many studies have proven that evidential fusion (based on Dempster-Shafer theory) is well-suited to remote sensing images because of its ability to handle abstract concepts such as ambiguity and uncertainty. However, few studies did focus on the application of this theory to complex textural data such as structural data. This issue is dealt with in the second part of this thesis; we focused on fusing multiscale KPC classifications with the help of Dempster-Shafer theory. Tests have shown that this multi-scale approach leads to an increase in classification efficiency when the original image has a low quality. Our study also points out a substantial potential for improvement gained from the estimation of intermediate classifications reliability and provides ideas to get these estimations.
|
2 |
Caractérisation des aérosols atmosphériques en milieu urbain par télédétection à très haute résolution spatialeThomas, Colin 11 January 2010 (has links) (PDF)
La réalisation de nouveaux instruments de télédétection à très haute résolution spatiale offre la possibilité d'étudier plus précisément les villes. Pour ces études, la connaissance de l'atmosphère et plus particulièrement des aérosols peut s'avérer essentielle. Le but de cette thèse est donc de développer une méthode de caractérisation des aérosols adaptée aux images de télédétection des milieux urbains à l'échelle métrique dans les domaines visible et proche-infrarouge. Dans un premier temps, les propriétés optiques de ces particules ont été étudiées en utilisant les données fournies par 68 stations urbaines du réseau AERONET. Ensuite, afin de pouvoir évaluer l'impact des aérosols présents dans les villes sur le signal, un code de transfert radiatif 3D a été réalisé : AMARTIS v2. L'utilisation de cet outil pour une scène urbaine typique a permis de quantifier l'impact des particules sur le signal, à l'ombre et au soleil, en fonction de leurs propriétés optiques. Enfin, une méthode de télédétection des aérosols a été définie, basée sur l'observation de transitions ombre/soleil. Afin de mettre en oeuvre cette méthode, un code d'inversion a été développé : OSIS. Une étude de sensibilité d'OSIS a alors été menée à partir d'images synthétiques générées avec AMARTIS v2 et une utilisation expérimentale a été effectuée sur des acquisitions PELICAN obtenues lors de la campagne aéroportée MUSARDE sur la ville de Toulouse. Ces études ont notamment permis de quantifier la précision intrinsèque d'OSIS, comparable aux précisions obtenues avec les produits satellitaires pour l'inversion des épaisseurs optiques, et de montrer que cette procédure est applicable à tout instrument à très haute résolution spatiale, multispectral ou hyperspectral, aéroporté ou satellitaire.
|
3 |
Cartographier l'occupation du sol à grande échelle : optimisation de la photo-interprétation par segmentation d'image. / Land cover mapping at large scale using photo-interpretation : Contribution of image segmentationVitter, Maxime 23 March 2018 (has links)
Depuis une quinzaine d’années, l’émergence des données de télédétection à Très Haute Résolution Spatiale (THRS) et la démocratisation des Systèmes d’Information Géographique (SIG) aident à répondre aux nouveaux besoins croissants d’informations spatialisées. Le développement de nouvelles méthodes de cartographie offre une opportunité pour comprendre et anticiper les mutations des surfaces terrestres aux grandes échelles, jusqu’ici mal connues. En France, l’emploi de bases de données spatialisées sur l’occupation du sol à grande échelle (BD Ocsol GE) est devenu incontournable dans les opérations courantes de planification et de suivi des territoires. Pourtant, l’acquisition de ce type de bases de données spatialisées est encore un besoin difficile à satisfaire car les demandes portent sur des productions cartographiques sur-mesure, adaptées aux problématiques locales des territoires. Face à cette demande croissante, les prestataires réguliers de ce type de données cherchent à optimiser les procédés de fabrication avec des techniques récentes de traitements d’image. Cependant, la Photo-Interprétation Assistée par Ordinateur (PIAO) reste la méthode privilégiée des prestataires. En raison de sa grande souplesse, elle répond toujours au besoin de cartographie aux grandes échelles, malgré son coût important. La substitution de la PIAO par des méthodes de production entièrement automatisées est rarement envisagée. Toutefois, les développements récents en matière de segmentation d’images peuvent contribuer à l’optimisation de la pratique de la photo-interprétation. Cette thèse présente ainsi une série d’outils (ou modules) qui participent à l’élaboration d’une assistance à la digitalisation pour l’exercice de photo-interprétation d’une BD Ocsol GE. L’assistance se traduit par la réalisation d’un prédécoupage du paysage à partir d’une segmentation menée sur une image THRS. L’originalité des outils présentés est leur intégration dans un contexte de production fortement contraint. La construction des modules est conduite à travers trois prestations cartographiques à grande échelle commandités par des entités publiques. L’apport de ces outils d’automatisation est analysé à travers une analyse comparative entre deux procédures de cartographie : l’une basée sur une démarche de photo-interprétation entièrement manuelle et la seconde basée sur une photo-interprétation assistée en amont par une segmentation numérique. Les gains de productivité apportés par la segmentation sont, évalués à l’aide d’indices quantitatifs et qualitatifs, sur des configurations paysagères différentes. À des degrés divers, il apparaît que quelque soit le type de paysage cartographié, les gains liés à la cartographie assistée sont substantiels. Ces gains sont discutés, à la fois, d’un point de vue technique et d’un point de vue thématique dans une perspective commerciale. / Over the last fifteen years, the emergence of remote sensing data at Very High Spatial Resolution (VHRS) and the democratization of Geographic Information Systems (GIS) have helped to meet the new and growing needs for spatial information. The development of new mapping methods offers an opportunity to understand and anticipate land cover change at large scales, still poorly known. In France, spatial databases about land cover and land use at large scale have become an essential part of current planning and monitoring of territories. However, the acquisition of this type of database is still a difficult need to satisfy because the demands concern tailor-made cartographic productions, adapted to the local problems of the territories. Faced with this growing demand, regular service providers of this type of data seek to optimize manufacturing processes with recent image-processing techniques. However, photo interpretation remains the favoured method of providers. Due to its great flexibility, it still meets the need for mapping at large scale, despite its high cost. Using fully automated production methods to substitute for photo interpretation is rarely considered. Nevertheless, recent developments in image segmentation can contribute to the optimization of photo-interpretation practice. This thesis presents a series of tools that participate in the development of digitalization assistance for the photo-interpretation exercise. The assistance results in the realization of a pre-cutting of the landscape from a segmentation carried out on a VHRS image. Tools development is carried out through three large-scale cartographic services, each with different production instructions, and commissioned by public entities. The contribution of these automation tools is analysed through a comparative analysis between two mapping procedures: manual photo interpretation versus digitally assisted segmentation. The productivity gains brought by segmentation are evaluated using quantitative and qualitative indices on different landscape configurations. To varying degrees, it appears that whatever type of landscape is mapped, the gains associated with assisted mapping are substantial. These gains are discussed both technically and thematically from a commercial perspective.
|
4 |
Modélisation physique d'images de télédétection optiqueGASCON, Ferran 20 December 2001 (has links) (PDF)
En télédétection optique, les modèles de transfert radiatif à l'intérieur du paysage terrestre et de l'atmosphère permettent de simuler et d'analyser la mesure radiométrique. Ces modèles, utilisés en mode "direct", reproduisent la mesure et aident à la spécification technique des futurs capteurs. De même, en mode "inverse", ils permettent d'estimer des paramètres de surface pour toute configuration d'observation et avec peu de mesures in situ. Actuellement, les principales limitations des modèles existants sont au niveau des hypothèses simplificatrices dans la représentation géométrique du paysage (spécialement pour la végétation). Ces simplifications affectent fortement les niveaux radiométriques et la texture des images à toute résolution spatiale. Ce-ci est particulièrement évident pour les images à très haute résolution spatiale (de l'ordre du mètre). Ainsi, il convient d'utiliser des modèles avec une représentation tridimensionnelle réaliste du paysage terrestre. L'objectif principal de cette thèse était d'améliorer la précision et la robustesse d'un modèle de transfert radiatif tridimensionnel (DART). Ce modèle simule la propagation du rayonnement avec les méthodes du suivi de rayons et des ordonnées discrètes à l'intérieur d'un milieu composé de cellules turbides (pour la végétation et l'air) et des cellules contenant des figures opaques (pour les murs, sol, troncs, etc.). La précision radiométrique a été améliorée avec l'introduction de nouvelles hypothèses simplificatrices concernant la modélisation du transfert radiatif appliquée aux cellules turbides et opaques. La robustesse a été fortement améliorée avec la modélisation intégrée du transfert radiatif atmosphérique et avec la possibilité de simuler tout type de paysage (naturel ou artificiel). DART a été validé en le comparant à d'autres modèles de transfert radiatif et des images aéroportées d'une zone urbaine. Le modèle a prouvé être efficient pour la spécification des caractéristiques techniques du futur capteur à très haute résolution spatiale de la constellation de satellites Plé iades. Finalement, DART a été appliqué pour l'estimation des paramètres biophysiques (indice foliaire, taux de couverture arborée et concentration en chlorophylle des feuilles) d'une forêt tempérée à partir d'images satellitaires SPOT (20 mètres de résolution) et Ikonos (résolution de l'ordre du mètre).
|
5 |
Quantification de dégâts sur le bâti liés aux catastrophes majeures par images satellite multimodales très haute résolutionChesnel, Anne-Lise 15 September 2008 (has links) (PDF)
Lors d'une catastrophe majeure, il est nécessaire de connaître rapidement l'importance des dégâts sur les bâtiments. Actuellement, cette quantification de dégâts se fait manuellement par comparaison visuelle d'images satellite. Les méthodes automatiques sont immatures ; leurs performances étant rarement évaluées, elles ne sont pas utilisées par les opérationnels. Nous proposons un protocole standard d'évaluation des performances de méthodes de quantification de dégâts. Il s'appuie sur des bases de données de référence obtenues pour cinq cas de catastrophes variées. Celles-ci contiennent pour chaque bâtiment l'emprise de son toit dans chaque image, ainsi qu'un degré de dégâts. Le protocole permet de quantifier les performances d'une méthode et de confronter ses résultats à d'autres. Disposant de ce protocole d'évaluation, nous proposons une méthode de quantification de dégâts à partir d'un couple d'images satellites panchromatiques de très haute résolution (THR) spatiale et d'un ensemble d'objets d'intérêt définis dans l'image de référence. La méthode développée doit pouvoir conduire à des résultats satisfaisants et reproductibles en utilisant des images de modalités différentes, et être automatisée au mieux. Les dégâts sur les bâtiments sont quantifiés par l'amplitude des changements sur leurs toits. Pour comparer ces derniers, ils doivent être alignés. Le recalage géométrique des données THR est un problème complexe non résolu ; une nouvelle méthode adaptée à notre problème est développée et évaluée. Elle aboutit à des résultats généralement satisfaisants pour notre application. Des indices de changements sont ensuite extraits. Deux coefficients de corrélation et des indices de texture obtenus par filtrage sont extraits, et un degré de dégâts est attribué à chacun des bâtiments par classification supervisée. L'impact des différences de modalité des images sur les performances de notre méthode est évalué. La méthode proposée est rapide, en grande partie généralisable et robuste à l'utilisation d'images THR de différentes résolutions ou issues de couples multicapteurs ; le paramètre influant est le B/H du couple.
|
6 |
DART : MODÈLE 3D MULTISPECTRAL ET INVERSION <br />D'IMAGES OPTIQUE DE SATELLITE<br />- APPLICATION AUX COUVERTS FORESTIERS -Martin, Emmanuel 25 July 2006 (has links) (PDF)
En télédétection optique, les modèles de transfert radiatif (T-R) ont pour but de simuler la mesure radiométrique des capteurs spatiaux qui observent le système "Terre - Atmosphère". La modélisation des mesures de couverts végétaux est en général limitée au niveau de la représentation du paysage et du T-R associé. Cette thèse a permis de transformer le modèle 3-D de T-R DART (brevet : PCT/FR 02/01181) en un modèle multispectral simulant les images de télédétection optique (thermique inclus) de tout paysage urbain et naturel, avec relief et atmosphère, pour tout capteur spatial/aéroporté. Ce nouveau modèle a été validé par comparaison avec d'autres modèles (expérience RAMI-3, Centre Commun de Recherche, Italie) et avec des mesures in situ et aéroportées (République Tchèque). In fine, une méthode d'inversion a été développée. Elle a permis d'utiliser DART pour évaluer l'impact de la modélisation sur l'extraction du LAI d'une forêt de conifères avec des images hyperspectrales THR.
|
7 |
Extraction, analyse et utilisation de relations spatiales entre objets d'intérêt pour une analyse d'images de télédétection guidée par des connaissances du domaine / Extraction, analysis and use of spatial relations between objects of interest for a knowledge driven remote sensing image analysisBelarte, Bruno 19 September 2014 (has links)
Les nouveaux capteurs satellitaires permettent l'acquisition d'images d'un très haut niveau de détail à des cadences élevées, produisant ainsi une importante masse de données. Le traitement manuel de ces données étant devenu impossible, de nouveaux outils sont nécessaires afin de les traiter automatiquement. Des algorithmes de segmentation efficaces sont nécessaires pour extraire des objets d'intérêt de ces images. Cependant les segments produits ne correspondent pas aux objets d'intérêt, rendant difficile l'utilisation de connaissances expertes.Dans le cadre de cette thèse nous proposons de changer le niveau d'interprétation d'une image afin de voir les objets d'intérêt pour l'expert comme des objets composés par des segments. Pour cela, nous avons mis en place un processus d'apprentissage multi-niveaux dans le but d'apprendre ces règles de composition. Une règle de composition ainsi apprise peut ensuite être utilisée pour extraire les objets d'intérêt correspondant. Dans un second temps, nous proposons d'utiliser l'algorithme d'apprentissage de règles de composition comme première étape d'une approche montante-descendante. Cette chaîne de traitement a pour objectif d'améliorer la classification à partir des informations contextuelles et de connaissances expertes. Des objets composés de plus haut niveau sémantique sont extraits à partir de règles apprises ou fournies par l'expert, et cette nouvelle information est utilisée pour mettre à jour la classification des objets aux niveaux inférieurs. L'ensemble de ces travaux ont été testés et validés sur des images Pléiades représentant la ville de Strasbourg. Les résultats obtenus montrent l'efficacité de l'apprentissage de règles de composition pour faire le lien entre connaissance experte et segmentation, ainsi que l'intérêt de l'utilisation d'informations contextuelles dans l'analyse d'images de télédétection à très haute résolution spatiale. / The new remote sensors allow the acquisition of very high spatial resolution images at high speeds, thus producing alarge volume of data. Manual processing of these data has become impossible, new tools are needed to process them automatically. Effective segmentation algorithms are required to extract objects of interest of these images. However, the produced segments do not match to objects of interest, making it difficult to use expert knowledge.In this thesis we propose to change the level of interpretation of an image in order to see the objects of interest of the expert as objects composed of segments. For this purpose, we have implemented a multi-level learning process in order to learn composition rules. Such a composition rule can then be used to extract corresponding objects of interest.In a second step, we propose to use the composition rules learning algorithm as a first step of a bottom-up top-down approach. This processing chain aims at improving the classification from contextual knowledge and expert information.Composed objects of higher semantic level are extracted from learned rules or rules provided by the expert, and this new information is used to update the classification of objects at lower levels.The proposed method has been tested and validated on Pléiades images representing the city of Strasbourg. The results show the effectiveness of the composition rules learning algorithm to make the link between expert knowledge and segmentation, as well as the interest of the use of contextual information in the analysis of remotely sensed very high spatial resolution images.
|
8 |
Caractérisation et cartographie de la structure forestière à partir d'images satellitaires à très haute résolution spatiale / Quantification and mapping of forest structure from Very High Resolution (VHR) satellite imagesBeguet, Benoît 06 October 2014 (has links)
Les images à très haute résolution spatiale (THR) telles que les images Pléiades (50 cm en Panchromatique, 2m en multispectral) rendent possible une description fine de la structure forestière (distribution et dimensions des arbres) à l'échelle du peuplement, en exploitant la relation entre la structure spatiale des arbres et la texture d'image quand la taille du pixel est inférieure à la dimension des arbres. Cette attente répond au besoin d'inventaire spatialisé de la ressource forestière à l'échelle du peuplement et de ses changements dus à la gestion forestière, à l'aménagement du territoire ou aux événements catastrophiques. L'objectif est double: (1) évaluer le potentiel de la texture d'images THR pour estimer les principales variables de structure forestière (diamètre des couronnes, diamètre du tronc, hauteur, densité ou espacement des arbres) à l'échelle du peuplement; (2) sur ces bases, classer les données image, au niveau pixel, par types de structure forestière afin de produire l'information spatialisée la plus fine possible. Les principaux développements portent sur l'automatisation du paramètrage, la sélection de variables, la modélisation par régression multivariable et une approche de classification par classifieurs d'ensemble (Forêts Aléatoires ou Random Forests). Ils sont testés et évalués sur deux sites de la forêt landaise de pin maritime à partir de trois images Pléiades et une Quickbird, acquises dans diverses conditions (saison, position du soleil, angles de visée). La méthodologie proposée est générique. La robustesse aux conditions d'acquisition des images est évaluée. Les résultats montrent que des variations fines de texture caractéristiques de celles de la structure forestière sont bien identifiables. Les performances en terme d'estimation des variables forestières (RMSE) : ~1.1 m pour le diamètre des couronnes, ~3 m pour la hauteur des arbres ou encore ~0.9 m pour leur espacement, ainsi qu'en cartographie des structures forestières (~82 % de taux de bonne classification pour la reconnaissance des 5 classes principales de la structure forestière) sont satisfaisantes d'un point de vue opérationnel. L'application à des images multi-annuelles permettra d'évaluer leur capacité à détecter et cartographier des changements tels que coupe forestière, mitage urbain ou encore dégâts de tempête. / Very High spatial Resolution (VHR) images like Pléiades imagery (50 cm panchromatic, 2m multispectral) allows a detailed description of forest structure (tree distribution and size) at stand level, by exploiting the spatial relationship between tree structure and image texture when the pixel size is smaller than tree dimensions. This information meets the expected strong need for spatial inventory of forest resources at the stand level and its changes due to forest management, land use or catastrophic events. The aim is twofold : (1) assess the VHR satellite images potential to estimate the main variables of forest structure from the image texture: crown diameter, stem diameter, height, density or tree spacing, (2) on these bases, a pixel-based image classification of forest structure is processed in order to produce the finest possible spatial information. The main developments concern parameter optimization, variable selection, multivariate regression modelling and ensemble-based classification (Random Forests). They are tested and evaluated on the Landes maritime pine forest with three Pléiades images and a Quickbird image acquired under different conditions (season, sun angle, view angle). The method is generic. The robustness of the proposed method to image acquisition parameters is evaluated. Results show that fine variations of texture characteristics related to those of forest structure are clearly identifiable. Performances in terms of forest variable estimation (RMSE): ~1,1m for crown diameter, ~3m for tree height and ~0,9m for tree spacing, as well as forest structure mapping (~82% Overall accuracy for the classification of the five main forest structure classes) are satisfactory from an operational perspective. Their application to multi- annual images will assess their ability to detect and map forest changes such as clear cut, urban sprawl or storm damages.
|
9 |
Diversité structurale des forêts denses humides de la Province Nord de Nouvelle Calédonie : de l'arbre au paysage / Structural diversity of rainforests of North Province of New Caledonia : from tree to landscapeBlanchard, Elodie 20 December 2016 (has links)
Dans un contexte de changements globaux, il est primordial de mettre au point des pratiques de gestion durable des forêts tropicales assurant le maintien de services environnementaux clés (e.g., biodiversité, stockage de carbone) et la production de biens essentiels aux communautés locales. La mesure, la spatialisation et la compréhension des déterminismes de la structure des forêts tropicales est un challenge pour la gestion durable des ressources forestières. Les forêts denses humides (FDH) de Nouvelle-Calédonie, un point chaud de biodiversité localisé dans le Pacifique Sud-Ouest, sont un modèle d'étude idéal pour comprendre les déterminants de la structure des FDH. En effet, les FDH néo-calédoniennes sont réparties le long d’une chaîne de montagne et sont ainsi soumises à de forts gradients environnementaux auxquels se superposent différents gradients de perturbations naturelles ou anthropiques. Les objectifs de cette thèse sont (i) de définir les caractéristiques structurales des FDH néo-calédoniennes, (ii) de cartographier les FDH et prédire leur structure à large échelle, et (iii) de quantifier l'influence de l’environnement et des dynamiques forestières sur la structure des FDH. Pour cela, 23 parcelles d’inventaire forestier de 100 m x 100 m ont été mise en place en Province Nord, entre 250 et 900 m d'altitude et 1500 et 3000 mm de précipitations annuelles. En plus de caractériser localement la structure des FDH, ces parcelles ont permis de calibrer un modèle prédictif basé sur l’analyse de la texture de la canopée, à l'aide la méthode FOTO (FOurier transform Textural Ordination), qui a été appliqué à huit images satellitaires à très haute résolution Pléiades (couvrant 1295 km2). Un tel modèle capable de lier texture et structure repose sur le postulat que la relation allométrique entre le DBH (Diameter at Breast Height) et l'aire de la couronne des arbres de canopée est stable. Nous avons également testé cette relation à échelle pantropicale. Nos résultats ont montré que les FDH néo-calédoniennes sont denses (1182 ± 233 tiges/ha), ont une aire basale élevée (44 ± 11 m2/ha), une canopée relativement basse (14 ± 3 m) et une biomasse aérienne caractéristique des forêts tropicales (299 ± 83 t/ha). Elles se distinguent également par une importante variabilité structurale. Cette variabilité est du même ordre que ce soit le long de gradients environnementaux ou de gradients de succession forestière. La méthode FOTO appliquée aux images Pléiades a permis de prédire et de spatialiser des paramètres structuraux clefs (tels que la densité de tiges et la biomasse aérienne des FDH) à partir de corrélations robustes avec les indices de texture de la canopée (R² ≥ 0,6; RMSE ≤ 20%). La structure des FDH est principalement dirigée par l'insolation potentielle et l'altitude à l'échelle des massifs montagneux, et par la pente et un indicateur topographique d'humidité à l'échelle du versant. Ces travaux permettront d'estimer les ressources forestières à l'échelle de la Nouvelle-Calédonie et de définir une nouvelle typologie des FDH sur le territoire intégrant leur variabilité structurale. / In the course of global change, new practices of sustainable management in tropical rainforests that maintain key environmental services (e.g., biodiversity, carbon sequestration) and produce goods on which local communities rely is needed. The measurement, spatialization and understanding of the drivers of rainforest structure at large scale is challenging for managing sustainably forest resources. Rainforests of New Caledonia, a biodiversity hotspot located in the South-West Pacific, are a well-suited study model to explore the drivers of rainforest structure. Indeed, New Caledonian rainforests are distributed along a mountain chain, which creates strong environmental gradients overlaid by a range of natural and anthropogenic disturbance gradients. The aims of this thesis are (i) to define some structural features of New Caledonian rainforests, (ii) to map rainforests and to predict their structure at large scale, and (iii) to quantify the influence of the environment and the forest dynamics on rainforest structure. To this end, 23 one hectare forest inventories were set up in the North Province of New Caledonia. In these plots, elevation ranged between 250 and 900 m and annual rainfall between 1500 and 3000 mm. In addition to characterize locally rainforest structure, these plots were used to calibrate a predictive model based on a textural analysis of the canopy, using the FOTO (FOurier transform Textural Ordination) method, which was applied to eight very high resolution images from a Pléiades satellite (covering 1295 km2). Such a model able to relate texture and structure is based on the hypothesis that the allometric relationship between the DBH (Diameter at Breast Height) and the crown size of a canopy tree is stable. We tested this hypothesis tropics-wide. Our results show that New Caledonian rainforests are dense (1182 ± 233 tree/ha), with a high basal area (44 ± 11 m2/ha), a relatively low canopy (14 ± 3 m) and an above-ground biomass typical of tropical rainforests (299 ± 83 t/ha). These forests are also characterized by a high structural variability. This variability has the same range when influenced by environmental gradients as when influenced by forest succession gradients. The FOTO method applied to Pléiades images allowed to predict and spatialize key structural parameters (like the stem density or the above-ground biomass of rainforests) from robust correlations with the textural indices of the canopy (R² ≥ 0,6; RMSE ≤ 20%). The structure of New Caledonian rainforest is mainly driven by the potential insolation and the elevation at the scale of mountain massifs, and by the slope and the topographic wetness at the scale of a mountainside. These findings will enable to estimate rainforest resources across the territory and to define a new typology of New Caledonian rainforests taking into account their structural variability.
|
10 |
Détection des bâtiments à partir des images multispectrales à très haute résolution spatiale par la transformation Hit-or-MissStankov, Katia January 2014 (has links)
Résumé : La détection des bâtiments dans les images à très haute résolution spatiale (THRS) a plusieurs applications pratiques et représente un domaine de recherche scientifique intensive ces dernières années. Elle fait face à la complexité du milieu urbain et aux spécificités des images provenant des différents capteurs. La performance des méthodes existantes pour l’extraction des bâtiments n’est pas encore suffisante pour qu’elles soient généralisées à grande échelle (différents types de tissus urbains et capteurs).
Les opérateurs morphologiques se sont montrés efficaces pour la détection des bâtiments dans les images panchromatiques (images en niveaux de gris) à très haute résolution spectrale (THRS). L’information spectrale issue des images multispectrales est jugée nécessaire pour l’amélioration de leur performance. L’extension des opérateurs morphologiques pour les images multispectrales exige l’adoption d’une stratégie qui permet le traitement des pixels sous forme de vecteurs, dont les composantes sont les valeurs dans les différentes bandes spectrales.
Ce travail de recherche vise l’application de la transformation morphologique dite Hit-or-Miss (HMT) à des images multispectrales à THRS, afin de détecter des bâtiments. Pour répondre à la problématique de l’extension des opérateurs morphologiques pour les images multispectrales, nous proposons deux solutions. Comme une première solution nous avons généré des images en niveaux de gris à partir les bandes multispectrales. Dans ces nouvelles images les bâtiments potentiels sont rehaussés par rapport à l’arrière-plan. La HMT en niveaux de gris est alors appliquée à ces images afin de détecter les bâtiments. Pour rehausser les bâtiments nous avons proposé un nouvel indice, que nous avons appelé Spectral Similarity Ratio (SSR). Pour éviter de définir des configurations, des ensembles d’éléments structurants (ES), nécessaires pour l’application de la HMT, au préalable, nous avons utilisé l’érosion et la dilatation floues et poursuivi la réponse des pixels aux différentes valeurs des ES. La méthode est testée sur des extraits d’images représentant des quartiers de type résidentiel. Le taux moyen de reconnaissance obtenu pour les deux capteurs Ikonos et GeoEye est de 85 % et de 80 %, respectivement. Le taux moyen de bonne identification, quant à lui, est de 85 % et 84 % pour les images Ikonos et GeoEye, respectivement. Après certaines améliorations, la méthode a été appliquée sur des larges scènes Ikonos et WorldView-2, couvrant différents tissus urbains. Le taux moyen des bâtiments reconnus est de 82 %. Pour sa part, le taux de bonne identification est de 81 %.
Dans la deuxième solution, nous adoptons une stratégie vectorielle pour appliquer la HMT directement sur les images multispectrales. La taille des ES de cette transformation morphologique est définie en utilisant la transformation dite chapeau haut-de-forme par reconstruction. Une étape de post-traitement inclut le filtrage de la végétation par l’indice de la végétation NDVI et la validation de la localisation des bâtiments par l’information d’ombre. La méthode est appliquée sur un espace urbain de type résidentiel. Des extraits d’images provenant des capteurs satellitaires Ikonos, GeoEye et WorldView 2 ont été traités. Le taux des bâtiments reconnus est relativement élevé pour tous les extraits - entre 85 % et 97 %. Le taux de bonne identification démontre des résultats entre 74 % et 88 %.
Les résultats obtenus nous permettent de conclure que les objectifs de ce travail de recherche, à savoir, la proposition d’une technique pour l’estimation de la similarité spectrale entre les pixels formant le toit d’un bâtiment, l’intégration de l’information multispectrale dans la HMT dans le but de détecter les bâtiments, et la proposition d’une technique qui permet la définition semi-automatique des configurations bâtiment/voisinage dans les images multispectrales, ont été atteints. // Abstract :
Detection of buildings in very high spatial resolution images (THRS) has various practical
applications and is recently a subject of intensive scientific research. It faces the complexity of the urban environment and the variety of image characteristics depending on the type of the sensor. The performance of existing building extraction methods is not yet sufficient to be generalized to a large scale (different urban patterns and sensors).
Morphological operators have been proven effective for the detection of buildings in panchromatic (greyscale) very high spectral resolution (VHSR) images. The spectral information of multispectral images is jugged efficient to improve the results of the detection. The extension of morphological operators to multispectral images is not straightforward. As pixels of multispectral images are pixels vectors the components of which are the intensity values in the different bands, a strategy to order vectors must be adopted.
This research thesis focuses on the application of the morphological transformation called Hit-or-Miss (HMT) on multispectral VHSR images in order to detect buildings. To address the issue of the extension of morphological operators to multispectral images we have proposed two solutions. The first one employs generation of greyscale images from multispectral bands, where potential buildings are enhanced. The grayscale HMT is then applied to these images in order to detect buildings. To enhance potential building locations we have proposed the use of Spectral Similarity Ratio (SSR). To avoid the need to set multiple configurations of structuring elements (SE) necessary for the implementation of the HMT, we have used fuzzy erosion and fuzzy dilation and examined the pixel response to different values of SE. The method has been tested on image subsets taken over residential areas. The average rate of recognition for the two sensors, Ikonos and GeoEye, is 85% and 80%, respectively. The average rate of correct identification is 85% and 84%, for Ikonos and GeoEye subsets, respectively. Having made some improvements, we then applied the method to large scenes from Ikonos and WorldView-2 images covering different urban patterns. The average rate of recognized buildings is 82%. The rate of correct identification is 81%.
As a second solution, we have proposed a new vector based strategy which allows the multispectral information to be integrated into the percent occupancy HMT (POHMT). Thus, the POHMT has been directly applied on multispectral images. The parameters for the POHMT have been defined using the morphological transformation dubbed top hat by reconstruction. A post-processing step included filtering the vegetation and validating building locations by proximity to shadow. The method has been applied to urban residential areas. Image subsets from Ikonos, GeoEye and WorldView2 have
been processed. The rate of recognized buildings is relatively high for all subsets - between 85% and 97%. The rate of correct identification is between 74 % and 88 %.
The results allow us to conclude that the objectives of this research, namely, suggesting a technique for estimating the spectral similarity between the pixels forming the roof of a building, the integration of multispectral information in the HMT in order to detect buildings and the proposition of a semiautomatic technique for the definition of the configurations building/neighbourhood in multispectral images, have been achieved.
|
Page generated in 0.115 seconds