Spelling suggestions: "subject:"très haute résolution spatiale"" "subject:"très haute résolution patiale""
11 |
Télédétection et épidémiologie en zone urbaine : de l'extraction de bâtiments à partir d'images satellite à très haute résolution à l'estimation de taux d'incidence / Remote sensing and epidemiology in urban zone : from extraction of buildings from very high resolution satellite images to the estimation of incidence ratesUpegui Cardona, Erika 08 October 2012 (has links)
En épidémiologie, une connaissance précise des populations à risque constitue un pré requis aucalcul d'indicateurs de l’état de santé d’une communauté (taux d'incidence). Néanmoins, les effectifsde population peuvent être indisponibles, ou peu fiables, ou insuffisamment détaillés pour un usageépidémiologique.L'objectif principal de ce travail est d'obtenir des taux d'incidence en l'absence de donnéesdémographiques, à une échelle spatiale infra-communale. Les objectifs secondaires sont d'estimerles populations humaines par l'intermédiaire de données satellitaires à très haute résolution spatiale(THRS), d'évaluer l'apport de ces données THRS par rapport aux données à haute résolution spatiale(Landsat) dans un même cadre urbain (Besançon), et de mettre au point une méthodologie simple etrobuste, pour garantir son exportabilité à d'autres zones.Nous proposons une approche en trois étapes, fondée sur la corrélation existant entre la densité depopulation et la morphologie urbaine. La première étape consiste à extraire des bâtiments à partirdes données télédétection THRS. Ces bâtiments sont utilisés dans la deuxième étape pour modéliserla population. A leur tour, ces populations servent de dénominateur, lors de la dernière étape, pourcalculer des taux d’incidence (cancers). Des données de référence sont utilisées à chaque étape pourévaluer les performances de notre méthodologie.Les résultats obtenus soulignent le potentiel de la télédétection pour mesurer l'état de santé d'unecommunauté (sous la forme de taux bruts d’incidence) à une échelle géographique fine. Ces tauxd'incidence estimés peuvent alors constituer des éléments de décision pour mieux adapter l'offre desoins aux besoin de santé, même en l'absence de données démographiques / In epidemiology, a precise knowledge of populations at risk is a prerequisite for calculating state ofhealth indicators of a community (incidence rates). The population data, however, may beunavailable, unreliable, or insufficiently detailed for epidemiological use.The main objective of this research is to estimate incidence rates, in cases of absence of demographicdata, at an infra-communal scale. The secondary objectives are to estimate the human populationthrough satellite data at very high spatial resolution (VHSR), to assess the contribution of this data(VHSR) compared with high spatial resolution data (Landsat) in a same urban framework (Besançon),and to develop a simple and robust methodology to ensure its exportability to other areas.We proposed a three-step approach based on the correlation between population density and urbanmorphology. The first step is to extract buildings from VHSR imagery data. These buildings are thenused in the second step to model the population data. Finally, this population data is used as thedenominator to calculate incidence rates (cancers). Reference data are used at each step to assessthe performance of our methodology.The results obtained highlight the potential of remote sensing to measure the state of health of acommunity (in the form of crude incidence rates) at a fine geographical scale. These estimatedincidence rates can be utilized as elements of decision to adapt better customized healthcare withrespect to the health needs of a given community, even in the absence of demographic data
|
12 |
Méthodes d'analyse de texture pour la cartographie d'occupations du sol par télédetection très haute résolution : application à la fôret, la vigne et les parcs ostréicoles / Texture analysis approach for soil occupation mapping using very high resolution remote sensing data : application to forest, vineyards and oyster parksRegniers, Olivier 11 December 2014 (has links)
Le travail présenté dans cette thèse a pour objectif d’évaluer le potentiel de modèles probabilistes multivariés appliqués sur les sous-bandes d’une décomposition en ondelettes pour la classification d’images de télédétection optiques à très haute résolution spatiale. Trois thématiques principales ont été investiguées dans ce travail : la différenciation de classes d’âge de peuplements de pins maritimes, la détection de parcelles viticoles et la détection de parcs ostréicoles. Une contribution originale concerne la proposition d’une chaîne traitement pour une classification supervisée orientée objet se basant sur des mesures de similarité adaptées au contexte de modélisation probabiliste. Celle-ci implique la création d’une base de données de patchs de texture pour l’apprentissage et l’utilisation d’une pré-segmentation de l’image à classifier. Les modèles probabilistes multivariés testés ont tout d’abord été évalués dans une procédure d’indexation d’images. Les modèles les plus performants identifiés par cette procédure ont été ensuite appliqués dans la chaîne de traitement proposée. Dans les trois thématiques explorées, les modèles multivariés ont révélé des capacités remarquables de représentation de la texture et ont permis d’obtenir une qualité de classification supérieure à celle obtenue par la méthode des matrices de co-occurrence. Ces résultats démontrent l’intérêt de la représentation multi-échelles et multi-orientations de la texture dans l’espace transformé en ondelettes et la pertinence de la modélisation multivariée des coefficients d’ondelettes issus de cette décomposition. / The prime objective of this thesis is to evaluate the potential of multivariate probabilistic models applied on wavelet subbands for the classification of very high resolution remote sensing optical data. Three main applications are investigated in this study: the differentiation of age classes of maritime pine forest stands, the detection of vineyards and the detection of oyster fields. One main contribution includes the proposal of an original supervised and object-oriented classification scheme based on similarity measurements adapted to the context of probabilistic modeling. This scheme involves the creation of a database of texture patches for the learning step and a pre-segmentation of the image to classify. The tested multivariate models were first evaluated in an image retrieval framework. The best models identified in this procedure were then applied in the proposed image processing scheme. In the three proposed thematic applications, multivariate models revealed remarkable abilities to represent the texture and reached higher classification accuracies than the method based on co-occurrence matrices. These results confirm the interest of the multi-scale and multi-orientation representation of textures through the wavelet transform, as well as the relevance of the multivariate modeling of wavelet coefficients
|
13 |
Analyse à l'échelle régionale de l'impact de l'occupation du sol dans les corridors rivulaires sur l'état écologique des cours d'eauTormos, Thierry 06 December 2010 (has links) (PDF)
Ce travail porte sur la caractérisation spatiale et la quantification de l'influence des pressions environnantes (occupation des sols à différentes échelles, du bassin versant amont au corridor rivulaire local) sur l'état écologique des cours d'eau. Abordée au niveau régional l'étude porte une attention particulière aux corridors rivulaires pour leur intérêt dans l'élaboration de stratégies de préservation et de restauration en application de la Directive Cadre européenne sur l'Eau. Elle repose sur le développement de méthodologies robustes et fiables (i) de cartographie fine de l'occupation des sols dans les corridors rivulaires, (ii) de construction d'indicateurs spatialisés traduisant cette occupation et (iii) de modélisation pressions/impacts quantifiant le lien entre occupation des sols dans les corridors rivulaires et état écologique des milieux aquatiques. Les résultats utilisant ces avancées méthodologiques montrent l'intérêt de disposer d'une donnée d'occupation du sol à Très Haute Résolution Spatiale sur de grands territoires, d'indicateurs calculés sur différentes emprises spatiales au niveau du corridor qui traduisent les mécanismes d'impacts d'une catégorie d'occupation du sol donnée sur l'état écologique pour améliorer l'identification et la localisation des sources de pressions dans ces espaces. Ils mettent en évidence également au niveau régional le rôle significatif des formations végétales rivulaires locales sur l'état écologique des cours d'eau, ceci sur une bande de 20 m de part et d'autre du cours d'eau.
|
14 |
Contribution de la texture pour l'analyse d'images à très haute résolution spatiale : application à la détection de changement en milieu périurbainLefebvre, Antoine 14 April 2011 (has links) (PDF)
Les données de télédétection acquises à Très Haute Résolution Spatiale (THRS) constituent une source d'information importante pour le suivi détaillé des changements d'occupation du sol sur de petites surfaces. Ces données sont particulièrement intéressantes pour les applications dans les milieux urbains et périurbains car elles permettent d'appréhender des changements brusques et irréguliers autant que des modifications subtiles et régulières. Toutefois, l'exploitation d'images à THRS nécessite des développements méthodologiques, les méthodes de détection de changement généralement utilisées pour traiter les images à basse et moyenne résolution n'étant pas adaptées : d'une part l'étendue et la résolution spectrale des capteurs à THRS sont souvent inférieures à celles des autres capteurs, la résolution spectrale des capteurs diminuant avec l'augmentation de leur résolution spatiale. D'autre part, la variabilité spectrale des pixels définissant les classes d'occupation du sol augmente en fonction de la résolution spatiale. Cette thèse présente ainsi une série d'outils méthodologiques qui permettent d'identifier et de caractériser automatiquement des changements affectant de petites surfaces à partir de données à THRS acquises à différentes dates et provenant de différentes sources. Contrairement à la majorité des méthodes utilisées en télédétection, l'originalité des outils présentés ne repose pas exclusivement ou essentiellement sur l'utilisation de l'information spectrale de l'image ; ils reposent surtout sur les propriétés de texture des objets géographiques observés. La texture est caractérisée à partir d'une analyse des coefficients issus d'une décomposition en ondelettes des images. Les outils développés comprennent : une méthode de correction de l'effet de vignettage des photographies aériennes anciennes ; une technique de segmentation d'images ; une méthode d'estimation de l'orientation dominante de motifs texturés ; une méthode de classification ; une méthode de détection de changements. L'ensemble de ces outils a été validé à partir d'exemples synthétiques, puis appliqué sur un secteur périurbain de l'agglomération rennaise afin de détecter les changements d'occupation et d'utilisation des sols à partir de photographies aériennes acquises en 1978 et 2001. Les taux de changement correctement détectés, qui varient de 78 % à 85 %, montrent l'intérêt d'exploiter la texture pour classer des images à THRS. Il est possible de détecter automatiquement différents types de changements et ainsi de distinguer des changements de pratiques culturales et des changements liés à l'artificialisation des sols. Les outils développés dans cette thèse sont génériques et s'appliquent à l'analyse de tout objet texturé. Ainsi nous avons exploité certains outils proposés pour détecter et caractériser des parcelles viticoles ou estimer des mouvements fluides en aéronautique
|
15 |
Extraction de réseaux de rues en milieu urbain à partir d'images satellites à très haute résolution spatialePeteri, Renaud 10 December 2003 (has links) (PDF)
La disponibilité d'images satellites à très haute résolution spatiale au dessus de zones urbaines est récente. Elle constitue potentiellement un très grand apport pour la cartographie des villes à des échelles de l'ordre du 1:10 000. La très haute résolution spatiale permet une représentation réelle des rues sue une carte, mais engendre une augmentation significative du bruit. Dans cette thèse, nous proposons une méthode d'extraction des réseaux de rues en milieu urbain à partir des images à très haute résolution spatiale. Son objectif est de répondre à une forte demande dans la création automatisée de cartes. La méthode proposée n'utilise que l'image numérique comme source d'information. Elle est semi-automatique au niveau de la détection et exploite la coopération entre la représentation linéique de la rue et sa représentation surfacique. Le graphe topologique du réseau est d'abord extrait et est utilisé pour initialiser l'étape de reconstruction surfacique. Le résultat d'extraction peut alors servir à recaler le graphe précisément sur l'axe des rues. La méthode utilise des contraintes géométriques fortes afin de ne pas dépendre d'un modèle de profil radiométrique de la rue, trop variable en milieu urbain. Dans cette optique, un modèle de contours actif associé à la transformée en ondelettes, le DoubleSnake, a été développé. Son évolution dans un cadre multi-échelle permet d'extraire les sections de rues à bords parallèles dans un environnement bruité. Les positions finales des DoubleSnakes permettent ensuite l'extraction des intersections. La méthode a été appliquée à des images de différents capteurs et avec différents types d'urbanisation. Un protocole innovant d'évaluation quantitative des résultats par comparaison à l'interprétation humaine a permis de montrer le caractère générique de la méthode, ainsi que sa bonne robustesse vis-à-vis du bruit. Cette méthode constitue un pas vers une cartographie automatisée du réseau de rues urbain.
|
16 |
Contribution des technologies satellitaires Pléiades à l'étude des trames vertes urbaines : entre maintien des connectivités écologiques potentielles et densification des espaces urbains / Contribution of Pléiades-HR images to the assessment of urban green infrastructures : dealing with urban ecological network issues and urban densificationCrombette, Pauline 13 May 2016 (has links)
En milieu urbain, la concurrence entre les enjeux de préservation de la biodiversité et de la densification du territoire est particulièrement développée. Dans une optique d’aide à la décision, une meilleure connaissance des zones les plus conflictuelles est requise. Face au constat d’insuffisance et d’inadéquation des données et des méthodes nécessaires à la cartographie des Trames vertes urbaines, notre travail s’intègre en premier lieu dans une démarche technique. Celle-ci est centrée sur la mise en place d’une méthode de traitement d’images satellitaires Très Haute Résolution Spatiale Pléiades (THRS) pour l’extraction de la végétation arborée et herbacée à l’échelle fine d’une emprise urbaine. D’abord appliquée à des données fictives, cette méthode est ensuite déployée sur quatre territoires (Toulouse, Muret, Pierrefite-Nestalas et Strasbourg). Bien que fondée sur une approche pixel, la simplicité de la méthode, qui s’appuie sur des outils libres, et les résultats obtenus (indice Kappa supérieur à 85 %) garantissent sa reproductibilité sur de vastes territoires plus ou moins urbanisés. Cette donnée de végétation est ensuite exploitée pour modéliser les connectivités écologiques potentielles du paysage urbain et périurbain toulousain. L’approche mobilise la théorie des graphes et permet d’évaluer l’impact d’un aménagement urbain sur la biodiversité. Le cas du Boulevard Urbain Nord de Toulouse est étudié. La cartographie proposée des réservoirs de biodiversité, hiérarchisés à l’aide de métriques de connectivité, est avant tout indicative. Elle est finalement confrontée à des documents d’urbanisme (Plans Locaux d’Urbanisme) afin d’obtenir une meilleure visibilité des territoires à enjeux environnementaux et urbanistiques. En fonction des enjeux fixés par les acteurs du territoire et à travers le filtre applicatif, cette thèse propose un outil robuste d’analyse et d’aide à la décision pour la gestion et la planification du territoire. / In urban areas, competition between land development and ecological conservation is intense. To assist decision making, a better knowledge of those areas of interest is required. Regarding inadequacy data and methods needed for ecological network mapping in urban areas, the aim of our study is to develop a method for semi-automatic vegetation extraction with Very High Spatial Resolution Pleiades imagery (VHSR). Initially applied to training samples, the process is then be deployed to four French study areas (Toulouse, Muret, Pierrefite-Nestalas and Strasbourg). The reproducibility of this method over large urbanized areas is ensured by its simplicity and the results of a pixel-based classification (kappa coefficient higher than 85 %). This extraction workflow uses free or open-source software. This vegetation data is then used in order to model potential ecological connectivity in Toulouse’s urban and peri-urban areas. Impacts on biodiversity due to urban planning are assessed using graph theory. The “Boulevard Urbain Nord de Toulouse” project, a road infrastructure, is studied. Graph metrics have been calculated to assess the level of connectivity at habitat patches and landscape scales. We classified the importance of the patches which is cross-tabulated with planning documents (PLU, a local town planning) in order to locate conflict urban areas: between biodiversity preservation and urbanization. Depending on the issues set out by local actors and through the application filter, this thesis proposes a robust analytical tool and decision-making aid for landscape management and land planning.
|
17 |
Caractérisation de l’hétérogénéité spatiale de milieux naturels à partir d’imagerie optique très haute résolution spatiale : cas d’application aux milieux méditerranéens de garrigue / Characterization of the spatial heterogeneity of natural environments from very high spatial resolution optical imagery : an application case to garrigue Mediterranean habitatsLang, Marc 29 May 2019 (has links)
La préservation de la biodiversité est un enjeu prioritaire, identifié aussi bien au niveau national qu’au niveau européen et international. L’hétérogénéité spatiale des milieux naturels est l’une des composantes clefs pour l’étude de la biodiversité et permet de comprendre le fonctionnement des écosystèmes. Le bassin Méditerranéen est un hotspot de biodiversité pour lequel le lien entre biodiversité et hétérogénéité spatiale des paysages s’illustre particulièrement bien. Les milieux méditerranéens s'organisent en mosaïques hétérogènes de quatre strates verticales: le sol nu, l’herbe, les ligneux bas et les ligneux hauts. La biodiversité de ces milieux est aujourd'hui menacée par une fermeture de milieux naturels qui entraîne la disparition de certains habitats et l’homogénéisation des paysages, homogénéisation qui entraîne elle-même une augmentation des risques d’incendies.Cette thèse se propose de développer des indices caractérisant l’hétérogénéité spatiale des milieux naturels dans un contexte méditerranéen à partir d’images de télédétection à très haute résolution. Parmi les différentes méthodes permettant de caractériser l'hétérogénéité, la méthode FOTO (FOurier Based Textural Ordination) est particulièrement intéressante car elle produit de façon non supervisée un nombre limité de gradients de texture non corrélés, à partir desquels il est possible de décrire les variations continues de l’hétérogénéité spatiale, et ce, à plusieurs échelles spatiales. Ainsi le premier objectif de cette thèse est de tester le potentiel des gradients de texture issus de la méthode FOTO pour la caractérisation de l’hétérogénéité spatiale relative aux quatre strates verticales caractéristiques des milieux méditerranéens. Le deuxième objectif est de tester la sensibilité de l’approche développée à des facteurs techniques et environnementaux, afin de s’assurer de sa réplicabilité pour favoriser son utilisation dans un contexte opérationnel de suivi des milieux méditerranéens. Enfin, le dernier objectif est de valider la pertinence écologique des indices d’hétérogénéité développés à travers un cas d’application~: la caractérisation de la répartition spatiale d’espèces d’oiseaux sensibles à l’hétérogénéité de la végétation.Combinés avec un indice de végétation, le NDVI, les indices de texture issus de la méthode FOTO ont pu être interprétés en termes d'hétérogénéité spatiale et ont permis de caractériser la composition et l'organisation des quatre strates verticales étudiées. Ces indices sont influencés par la présence de surfaces anthropisées comme les cultures ainsi que par la nature de l'information radiométrique des images de télédétection utilisées, qui impacte le contraste apparent des strates de végétation. Ainsi, l'application de la méthode sur une bande panchromatique est plus sensible aux motifs liés à l'alternance de sol nu et d'herbe tandis que l'application de la méthode sur le NDVI est plus sensible aux motifs lié à l'alternance des ligneux avec la strate herbacée. Enfin, nous avons montré l’intérêt de l’approche développée pour la prédiction de plusieurs espèces d’oiseaux à fort enjeux de conservation. Les indices d’hétérogénéité ont permis de mettre en évidence des structures de la végétation particulièrement favorables à certaines espèces d’oiseaux.L'approche développée dans cette thèse est particulièrement intéressante car elle permet la production non supervisée de trois indices complémentaires caractérisant plusieurs composantes de l'hétérogénéité spatiale relatives à quatre strates. Des efforts sont encore nécessaires pour améliorer i) notre compréhension de la contribution de facteurs environnementaux et instrumentaux sur la stabilité de l'approche et ii) son automatisation en vue d'une application dans un contexte opérationnel pour la cartographie et le suivi de l'état de conservation des habitats naturels et de l'avifaune. / The preservation of biodiversity is a priority issue, both at national, European and international levels. In order to provide a better understanding of ecosystem functioning, spatial heterogeneity of natural environments is becoming one of the key components for the study of biodiversity. The Mediterranean basin is a hotspot of biodiversity for which the synergies between biodiversity and spatial heterogeneity of landscapes are particularly important. Mediterranean environments are organized into heterogeneous mosaics of four vertical strata~: bare soil, herbs, low ligneous and high ligneous. The biodiversity of these unique hotspots is now threatened by a closure of the landscape that leads to the habitat loss and landscape homogenization. The loss of heterogeneity is also leading to an increase in fire risks.This thesis aims to develop indices characterizing the spatial heterogeneity of natural landscapes in a Mediterranean context using very high spatial resolution remote sensing images. Among the various methods dedicated to the characterization of heterogeneity, the FOTO (FOurier Based Textural Ordination) method is particularly relevant because it produces uncorrelated texture gradients in an unsupervised manner, allowing continuous variations in spatial heterogeneity to be characterized at different spatial scales. Thus, the first objective of this thesis is to test the potential of texture indices derived from the FOTO method for the characterization of spatial heterogeneity relative to four vertical strata. The second objective is to test the sensitivity of our approach to technical and environmental factors, in order to ensure its replicability, and promote its use in an operational context of monitoring Mediterranean environments. Finally, based on a case study centered on the spatial distribution of bird species sensitive to vegetation heterogeneity, the last objective is oriented towards the validation of the ecological relevance of the heterogeneity indices.Combined with a vegetation index, NDVI, the texture indices derived from the FOTO method could be interpreted in terms of spatial heterogeneity and make it possible to characterize the composition and organization of the four vertical strata studied. These indices are influenced bymultiple factors, including the anthropization of landscapes showing patterns translated into surfaces such as crops, and the nature of the radiometric information of the remote sensing images processed. This pattern information impacts the apparent contrast of vegetation strata. Thus, the application of the method on a panchromatic band is more sensitive to patterns related to the alternation of bare soil and herbs while the application of the method on NDVI is more sensitive to patterns related to the alternation of ligneous strata with the herbaceous stratum. Finally, we have shown the interest of the approach developed for the prediction of several bird species with high conservation stakes. Heterogeneity indices have made it possible to highlight vegetation structures that are particularly favourable to certain bird species.The approach developed in this thesis is particularly stimulating because it allows the unsupervised production of three complementary indices characterizing several components of spatial heterogeneity related to four strata. Further efforts are needed to improve i) our understanding of the contribution of environmental and instrumental factors to the stability of the approach and ii) its automation for application in an operational context for mapping and monitoring the conservation status of natural habitats and birdlife.
|
Page generated in 0.1063 seconds