Spelling suggestions: "subject:"trace gas detection"" "subject:"grace gas detection""
1 |
Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometryFoltynowicz, Aleksandra January 2009 (has links)
Noise-immune cavity-enhanced optical heterodyne molecular spectro-metry (NICE-OHMS) is one of the most sensitive laser-based absorption techniques. The high sensitivity of NICE-OHMS is obtained by a unique combination of cavity enhancement (for increased interaction length with a sample) with frequency modulation spectrometry (for reduction of noise). Moreover, sub-Doppler detection is possible due to the presence of high intensity counter-propagating waves inside an external resonator, which provides an excellent spectral selectivity. The high sensitivity and selectivity make NICE-OHMS particularly suitable for trace gas detection. Despite this, the technique has so far not been often used for practical applications due to its technical complexity, originating primarily from the requirement of an active stabilization of the laser frequency to a cavity mode. The main aim of the work presented in this thesis has been to develop a simpler and more robust NICE-OHMS instrumentation without compro-mising the high sensitivity and selectivity of the technique. A compact NICE-OHMS setup based on a fiber laser and a fiber-coupled electro-optic modulator has been constructed. The main advantage of the fiber laser is its narrow free-running linewidth, which significantly simplifies the frequency stabilization procedure. It has been demonstrated, using acetylene and carbon dioxide as pilot species, that the system is capable of detecting relative absorption down to 3 × 10-9 on a Doppler-broadened transition, and sub-Doppler optical phase shift down to 1.6 × 10-10, the latter corresponding to a detection limit of 1 × 10-12 atm of C2H2. Moreover, the potential of dual frequency modulation dispersion spectrometry (DFM-DS), an integral part of NICE-OHMS, for concentration measurements has been assessed. This thesis contributes also to the theoretical description of Doppler-broadened and sub-Doppler NICE-OHMS signals, as well as DFM-DS signals. It has been shown that the concentration of an analyte can be deduced from a Doppler-broadened NICE-OHMS signal detected at an arbitrary and unknown detection phase, provided that a fit of the theoretical lineshape to the experimental data is performed. The influence of optical saturation on Doppler-broadened NICE-OHMS signals has been described theoretically and demonstrated experimentally. In particular, it has been shown that the Doppler-broadened dispersion signal is unaffected by optical saturation in the Doppler limit. An expression for the sub-Doppler optical phase shift, valid for high degrees of saturation, has been derived and verified experimentally up to degrees of saturation of 100.
|
2 |
Développements d'instrumentations lasers (QCL, DFG) dédiés à la métrologie d'espèces d'intérêt atmosphérique (CH₄, HONO) / Developments of laser-based instrumentation (QCL, DFG) dedicated to optical monitoring of atmospheric species (CH₄, HONO)Maamary, Rabih 15 December 2014 (has links)
Nous reportons dans ces travaux de thèse le développement de deux spectromètres à lasers fonctionnant dans la région spectrale du moyen infrarouge (2,78 µm et 8 µm) correspondant aux deux fenêtres atmosphériques pour la détection de traces de gaz. Le premier spectromètre, basé sur la génération de différence de fréquences (DFG) vers 2,78 µm, est couplé à un spectromètre utilisant un laser à cascade quantique (QCL) vers 8 µm dans une cellule multipassages. Ce montage croisé nous a permis de déterminer pour la première fois expérimentalement les intensités de 31 raies d’absorption les plus intenses de la branche Q de la bande fondamentale ν₁ de l’isomère trans de l’acide nitreux (trans-HONO), considéré comme espèce clé pour la capacité d'oxydation atmosphérique. Nous avons exploité le spectromètre à QCL lors d’une campagne de mesures ciblée sur la surveillance continue du méthane (CH₄) pendant le mois de janvier 2013 à Dunkerque. Les observations de la variation de la concentration du CH₄ ont été analysées à l'aide des paramètres météorologiques simultanément enregistrées. Face au besoin d’identification de ses sources d’émission, nous avons développé la technique IRLS (Isotope Ratio Laser Spectrometry) pour la mesure du taux isotopique de ¹³CH₄/¹²CH₄. Les résultats préliminaires sont présentés. / I report in this PhD thesis on the development of two mid-infrared laser spectrometers, based on difference-frequency generation (DFG) and quantum cascade laser (QCL), for application to trace gas monitoring. The DFG spectrometer (2.78 µm) was coupled with the QCL spectrometer (8 µm) to simultaneously measure nitrous acid (HONO) absorption spectra of the v₁ and v₃ bands respectively. Such crossing measurements allow us to determine experimentally, for the first time, the line strengths of 31 absorption lines of the ν1 band of trans isomer of nitrous acid that significantly impacts the air quality and climate change because of its crucial role in the atmospheric oxidation capacity. The QCL spectrometer is also deployed for continuous monitoring of methane (CH₄) during January 2013 in Dunkirk. Methane concentration variation is analyzed with the help of the simultaneously recorded meteorological parameters. In order to identify the sources of CH₄ emission, I developed an Isotope Ratio Laser Spectrometry (IRLS) technique to measure the isotopic ratio of ¹³CH₄/¹²CH₄. Preliminary results are presented.
|
Page generated in 0.1177 seconds