• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A combined method to forecast and estimate traffic demand in urban networks

Pohlmann, Tobias, Bernhard, Friedrich 13 May 2019 (has links)
This paper presents a combined method for short-term forecasting of detector counts in urban networks and subsequent traffic demand estimation using the forecasted counts as constraints to estimate origin-destination (OD) flows, route and link volumes. The method is intended to be used in the framework of an adaptive traffic control strategy with consecutive optimization intervals of 15. min. The method continuously estimates the forthcoming traffic demand that can be used as input data for the optimization. The forecasting uses current and reference space-time-patterns of detector counts. The reference patterns are derived from data collected in the past. The current pattern comprises all detector counts of the last four time intervals. A simple but effective pattern matching is used for forecasting. The subsequent demand estimation is based on the information minimization model that has been integrated into an iterative procedure with repeated traffic assignment and matrix estimation until a stable solution is found. Some enhancements including the improvement of constraints, redundancy elimination of these constraints and a travel time estimation based on a macroscopic simulation using the Cell Transmission Model have been implemented. The overall method, its modules and its performance, which has been assessed using artificially created data for a real sub-network in Hannover, Germany, by means of a microsimulation with Aimsun NG, are presented in this paper.
2

Improving Analytical Travel Time Estimation for Transportation Planning Models

Lu, Chenxi 19 May 2010 (has links)
This dissertation aimed to improve travel time estimation for the purpose of transportation planning by developing a travel time estimation method that incorporates the effects of signal timing plans, which were difficult to consider in planning models. For this purpose, an analytical model has been developed. The model parameters were calibrated based on data from CORSIM microscopic simulation, with signal timing plans optimized using the TRANSYT-7F software. Independent variables in the model are link length, free-flow speed, and traffic volumes from the competing turning movements. The developed model has three advantages compared to traditional link-based or node-based models. First, the model considers the influence of signal timing plans for a variety of traffic volume combinations without requiring signal timing information as input. Second, the model describes the non-uniform spatial distribution of delay along a link, this being able to estimate the impacts of queues at different upstream locations of an intersection and attribute delays to a subject link and upstream link. Third, the model shows promise of improving the accuracy of travel time prediction. The mean absolute percentage error (MAPE) of the model is 13% for a set of field data from Minnesota Department of Transportation (MDOT); this is close to the MAPE of uniform delay in the HCM 2000 method (11%). The HCM is the industrial accepted analytical model in the existing literature, but it requires signal timing information as input for calculating delays. The developed model also outperforms the HCM 2000 method for a set of Miami-Dade County data that represent congested traffic conditions, with a MAPE of 29%, compared to 31% of the HCM 2000 method. The advantages of the proposed model make it feasible for application to a large network without the burden of signal timing input, while improving the accuracy of travel time estimation. An assignment model with the developed travel time estimation method has been implemented in a South Florida planning model, which improved assignment results.

Page generated in 0.1059 seconds