• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes de plasticité synaptique dans l’amygdale lors de la réactivation de la mémoire de peur auditive chez le rat : interaction dynamique des récepteurs NMDA et AMPA

Ben Mamou, Cyrinne 07 1900 (has links)
La plasticité synaptique est une propriété indispensable à l’acquisition de la mémoire chez toutes les espèces étudiées, des invertébrés aux primates. La formation d’une mémoire débute par une phase de plasticité qui inclut une restructuration synaptique ; ensuite elle se poursuit par la consolidation de ces modifications, contribuant à la mémoire à long terme. Certaines mémoires redeviennent malléables lorsqu’elles sont rappelées. La trace mnésique entre alors dans une nouvelle de phase de plasticité, au cours de laquelle certaines composantes de la mémoire peuvent être mises à jour, puis reconsolidées. L’objectif de la présente thèse est d’étudier les mécanismes cellulaires et moléculaires qui sont activés lors du rappel d’une mémoire. Nous avons utilisé un modèle de conditionnement Pavlovien, combiné à l’administration d’agents pharmacologiques et à l’analyse quantitative de marqueurs de plasticité synaptique, afin d’étudier la dynamique de la mémoire de peur auditive chez des rats Sprague Dawley. La circuiterie neuronale et les mécanismes associatifs impliqués dans la neurobiologie de cette mémoire sont bien caractérisés, en particulier le rôle des récepteurs glutamatergiques de type NMDA et AMPA dans la plasticité synaptique et la consolidation. Nos résultats démontrent que le retour de la trace mnésique à un état de labilité nécessite l’activation des récepteurs NMDA dans l’amygdale baso-latérale à l’instant même du rappel, alors que les récepteurs AMPA sont requis pour l’expression comportementale de la réponse de peur conditionnée. D’autre part, les résultats identifient le rappel comme une phase bien plus dynamique que présumée, et suggèrent que l’expression de la peur conditionnée mette en jeu la régulation du trafic des récepteurs AMPA par les récepteurs NMDA. Le présent travail espère contribuer à la compréhension de la neurobiologie fondamentale de la mémoire. De plus, il propose une intégration des résultats aux modèles animaux d’étude des troubles psychologiques conséquents aux mémoires traumatiques chez l’humain, tels que les phobies et les syndromes de stress post-traumatiques. / Synaptic plasticity is necessary for the acquisition of memory in all studied species, from invertebrates to primates. Memory formation starts with a phase of plasticity that entails synaptic remodeling ; then follows the consolidation of these modifications, which contributes to long-term memory. Some memories return to a malleable state upon retrieval. Consequently, the memory trace enters a new phase of plasticity, during which some memory components are eventually updated, then reconsolidated. The aim of the present thesis was to study the cellular and molecular mechanisms that are engaged during memory retrieval. We used a model of Pavlovian conditioning in Sprague Dawley rats, combined to pharmacological manipulations and quantitative analysis of synaptic plasticity markers, in order to study the dynamics of auditory fear memory. The neuronal circuitry and the associative mechanisms involved in the neurobiology of this memory are well characterized, in particular the role of NMDA and AMPA glutamatergic receptors in synaptic plasticity and consolidation. Our results show that the return of the memory trace to lability requires activation of NMDA receptors in the basolateral amygdala during retrieval, whereas AMPA receptors are necessary for the behavioral expression of the conditioned fear response. Furthermore, the data identify retrieval as being much more dynamic than recognized, and suggest that conditioned fear expression involves NMDA receptor-dependent regulation of AMPA receptors’ trafficking. The present work attempts to advance our understanding of the fundamental neurobiology of memory. In addition, it offers an integrative view of the data with regards to animal modeling of human clinical issues related to traumatic memories, like phobias and post-traumatic stress disorders.
2

Mécanismes de plasticité synaptique dans l’amygdale lors de la réactivation de la mémoire de peur auditive chez le rat : interaction dynamique des récepteurs NMDA et AMPA

Ben Mamou, Cyrinne 07 1900 (has links)
La plasticité synaptique est une propriété indispensable à l’acquisition de la mémoire chez toutes les espèces étudiées, des invertébrés aux primates. La formation d’une mémoire débute par une phase de plasticité qui inclut une restructuration synaptique ; ensuite elle se poursuit par la consolidation de ces modifications, contribuant à la mémoire à long terme. Certaines mémoires redeviennent malléables lorsqu’elles sont rappelées. La trace mnésique entre alors dans une nouvelle de phase de plasticité, au cours de laquelle certaines composantes de la mémoire peuvent être mises à jour, puis reconsolidées. L’objectif de la présente thèse est d’étudier les mécanismes cellulaires et moléculaires qui sont activés lors du rappel d’une mémoire. Nous avons utilisé un modèle de conditionnement Pavlovien, combiné à l’administration d’agents pharmacologiques et à l’analyse quantitative de marqueurs de plasticité synaptique, afin d’étudier la dynamique de la mémoire de peur auditive chez des rats Sprague Dawley. La circuiterie neuronale et les mécanismes associatifs impliqués dans la neurobiologie de cette mémoire sont bien caractérisés, en particulier le rôle des récepteurs glutamatergiques de type NMDA et AMPA dans la plasticité synaptique et la consolidation. Nos résultats démontrent que le retour de la trace mnésique à un état de labilité nécessite l’activation des récepteurs NMDA dans l’amygdale baso-latérale à l’instant même du rappel, alors que les récepteurs AMPA sont requis pour l’expression comportementale de la réponse de peur conditionnée. D’autre part, les résultats identifient le rappel comme une phase bien plus dynamique que présumée, et suggèrent que l’expression de la peur conditionnée mette en jeu la régulation du trafic des récepteurs AMPA par les récepteurs NMDA. Le présent travail espère contribuer à la compréhension de la neurobiologie fondamentale de la mémoire. De plus, il propose une intégration des résultats aux modèles animaux d’étude des troubles psychologiques conséquents aux mémoires traumatiques chez l’humain, tels que les phobies et les syndromes de stress post-traumatiques. / Synaptic plasticity is necessary for the acquisition of memory in all studied species, from invertebrates to primates. Memory formation starts with a phase of plasticity that entails synaptic remodeling ; then follows the consolidation of these modifications, which contributes to long-term memory. Some memories return to a malleable state upon retrieval. Consequently, the memory trace enters a new phase of plasticity, during which some memory components are eventually updated, then reconsolidated. The aim of the present thesis was to study the cellular and molecular mechanisms that are engaged during memory retrieval. We used a model of Pavlovian conditioning in Sprague Dawley rats, combined to pharmacological manipulations and quantitative analysis of synaptic plasticity markers, in order to study the dynamics of auditory fear memory. The neuronal circuitry and the associative mechanisms involved in the neurobiology of this memory are well characterized, in particular the role of NMDA and AMPA glutamatergic receptors in synaptic plasticity and consolidation. Our results show that the return of the memory trace to lability requires activation of NMDA receptors in the basolateral amygdala during retrieval, whereas AMPA receptors are necessary for the behavioral expression of the conditioned fear response. Furthermore, the data identify retrieval as being much more dynamic than recognized, and suggest that conditioned fear expression involves NMDA receptor-dependent regulation of AMPA receptors’ trafficking. The present work attempts to advance our understanding of the fundamental neurobiology of memory. In addition, it offers an integrative view of the data with regards to animal modeling of human clinical issues related to traumatic memories, like phobias and post-traumatic stress disorders.
3

Identification de nouveaux régulateurs de la synaptogénèse GABAergique à la jonction neuromusculaire du nématode Caenorhabditis elegans / Identification of novel regulators of GABAergic synaptogenesis at neuromuscular junction of C. elegans

Gueydan, Marine 14 October 2019 (has links)
Afin d’identifier de nouveaux régulateurs impliqués dans le contrôle du nombre des RGABAs à la synapse, nous avons utilisé la jonction neuromusculaire GABAergique du nématode Caenorhabditis elegans comme système modèle. Après mutagénèse aléatoire d’une souche knock-in exprimant les RGABAs tagués avec une protéine fluorescente (TagRFP), nous avons isolé plusieurs mutants présentant des défauts de localisation des récepteurs. Nous avons mis au point une nouvelle stratégie, basée sur l’analyse bio-informatique de données issues du séquençage du génome entier (WGS), en combinant identification et cartographie des mutations causales sans étape préalable de cartographie génétique. Sur 36 mutants analysés, nous avons retrouvé plusieurs gènes connus pour leur rôle dans la synaptogénèse GABAergique, validant ainsi notre approche. Nous avons initié la caractérisation fonctionnelle d’un nouveau gène candidat, provisoirement appelé nsp-3, qui code pour une protéine transmembranaire hautement conservée au cours de l’évolution. L’absence de nsp-3 induit la localisation ectopique de RGABAs au sein du muscle. Les récepteurs ectopiques colocalisent partiellement avec des marqueurs endosomaux. Des données d’électrophysiologie combinées à des analyses quantitatives du nombre de récepteurs synaptiques, montrent que NSP-3 régule la formation d’un pool de réserve de récepteurs sous-synaptiques. Des données pharmacologiques montrent que le recrutement de ce pool est essentiel dans la plasticité synaptique de la JNM GABAergique après un traitement aigu à l’aldicarbe, un inhibiteur de l’acétylcholine estérase (AChE). L’observation d’un reporteur transcriptionnel montre que nsp-3 est exprimé dans la plupart des tissus du vers. Des expériences de sauvetage phénotypique tissu-spécifiques et des données de colocalisation in vivo suggèrent que NSP-3 agit dans le muscle, à l’interface RE-Golgi, où elle régule le trafic des RGABAAs vers la surface. Cette étude décrit un rôle des nonaspanines dans un nouveau processus cellulaire où elles régulent le trafic des RGABAAs à la jonction neuromusculaire de C. elegans / To identify novel genes and mechanisms involved in the formation and regulation of inhibitory synapses, we used the inhibitory GABAergic neuromuscular junction of the nematode C. elegans as a genetically tractable model. After random mutagenesis of a knock-in strain expressing fluorescently tagged GABAA receptors (GABAAR), we screened for mutants with abnormal fluorescence pattern in vivo. We analyzed 36 mutant strains using a novel whole-genome sequencing strategy to simultaneously map and identify causative mutation without any prior time-consuming genetic mapping. We undertook the functional characterization of a non-characterized gene, tentatively named nsp-3, which encodes an evolutionarily conserved transmembrane protein. nsp-3 deletion using CRISPR technology causes ectopic localization of GABAAR in intracellular compartments of the muscle cell. We found partial colocalization of these ectopic receptors with endosomal markers. Interestingly, we observed a 50 % decrease of GABAAR at synapses while we saw no change in GABA neurotransmission by electrophysiology. These and additional data predict the presence of a subsynaptic pool of GABAARs, which is depleted in the absence of NSP-3. Additional pharmacological data set suggests that this pool of receptors is recruited for GABAergic synaptic plasticity upon acute aldicarb (acetylcholine esterase inhibitor) treatment. A transcriptional reporter of endogenous nsp-3 expression detected expression in most tissues of the worm. Tissue-specific rescue experiments and colocalization data show that NSP-3 functions in muscles at ER-Golgi interface to regulate GABAARs trafficking to cell surface. Our data identified a novel function of the nonaspanins in the traffic of neurotransmitter receptors in the nervous system
4

L’interactome de Scrib1 et son importance pour la plasticitè synaptique & les troubles de neurodéveloppement / The Scrib1 Interactome and its relevance for synaptic plasticity & neurodevelopmental disorders

Margarido Pinheiro, Vera 04 December 2014 (has links)
Le cerveau contient environ cent milliards de cellules nerveuses, ou neurones. Ces neurones communiquent entre eux par des structures fonctionnellement distinctes – l’axone et la dendrite – capables d’émettre et recevoir des signaux électriques ou chimiques à partir d’un compartiment présynaptique vers un compartiment, dit post-synaptique. Nous avons focalisé notre étude sur les synapses des neurones hippocampiques, qu’on estime responsables de fonctions cérébrales dites supérieures, comme la mémoire et l’apprentissage. Plus particulièrement, on s’est intéressé au développement et au maintien des épines dendritiques, dont les changements morphologiques sont intimement liés à la plasticité synaptique, autrement dit, capacité de réponse à l’activité synaptique. Les épines dendritiques ont pour origine les filopodes qui évoluent en épines lors du contact axonal. La transition entre filopode et épine implique une myriade de molécules, dont des récepteurs glutamatergiques, des protéines d’échafaudage et du cytosquelette d’actine capables de recevoir, transmettre et intégrer le signal présynaptique. Cependant, la coordination spatiale et temporelle de tous ces composants moléculaires au long de la formation et maturation d’une synapse reste largement méconnue.Scribble1 (Scrib1) est une protéine de polarité cellulaire (PCP) classiquement impliquée dans l’homéostasie de tissues épithéliaux ainsi que dans la croissance et progression des tumeurs. Scrib1 est aussi une protéine d’échafaudage critique pour le développement et le bon fonctionnement du cerveau. L’objectif de cette étude a donc été d’étudier les mécanismes moléculaires sous-jacents à un rôle potentiel de Scrib1 dans la formation et le maintien des synapses. Dans un premier temps, on a décrit l’importance d’interactions dépendantes des domaines PDZ sur le trafic des récepteurs glutamatergiques ainsi que sur la voie de signalisation de plasticité synaptique sous-jacente à la mémoire spatiale. Dans un second temps, nous avons évalué les conséquences fonctionnelles d’une mutation de Scrib1 récemment identifiée chez un patient humain atteint des troubles du spectre autistique (TSA) dans la morphologie et fonction des neurones. On a démontré que Scrib1 régule l’arborisation dendritique ainsi que la formation et le maintien fonctionnel des épines dendritiques via un mécanisme dépendent du cytosquelette d’actine. Le dérèglement de ces mécanismes pourrait être à l’origine du phénotype TSA. L’ensemble de ce travail met en évidence que Scrib1, protéine d’échafaudage clé dans le développement et la fonction du cerveau, joue une multitude de rôle du niveau subcellulaire au niveau cognitif. / The brain is made up of billions of nerve cells, or neurons. Neurons communicate with each other through functionally distinct structures - the axon and the dendrite - which are able to release and receive an electrical or chemical signal from a pre- to a post-synaptic compartment, respectively. We focused our study on hippocampal neurons synapses, which ultimately underlie high-order brain functions, such as learning and memory. In particular, we studied the development and maintenance of dendritic spines, whose changes in morphology are intimately correlated with synaptic plasticity, or the ability to respond to synaptic activity. Dendritic spines originate from motile dendritic filopodia, which mature into spines following axonal contact. The filopodia-to-spine transition involves a plethora of molecular actors, including glutamate receptors, scaffold proteins and the actin cytoskeleton, able to receive, transmit and integrate the pre-synaptic signal. The spatial and temporal coordination of all these molecular components throughout the formation and maturation of a synapse remains, however, unclear. Scribble1 (Scrib1) is planar cell polarity protein (PCP) classically implicated in the homeostasis of epithelial tissues and tumour growth. In the mammalian brain, Scrib1 is a critical scaffold protein in brain development and function. The main goal of this work was, therefore, to investigate the molecular mechanisms underlying Scrib1 role in synapse formation and maintenance. In a first part, we depict the importance of Scrib1 PDZ-dependent interactions on glutamate receptors trafficking as well as bidirectional plasticity signalling pathway underying spatial memory. In a second part, we focus on the functional consequences of a recently identified autism spectrum disorder (ASD) mutation of Scrib1 on neuronal morpholgy and function. We demonstrated that Scrib1 regulates dendritic arborization as well as spine formation and functional maintenance via an actin-dependent mechanism, whose disruption might underlie the ASD phenotype. Taken altogether, this thesis highlights the PCP protein Scrib1 as key scaffold protein in brain development and function, playing a plethora of roles from the subcelular to the cognitive level.

Page generated in 0.0494 seconds