• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

WCDMA Cell Load Control in a High-speed Train Scenario : Development of Proactive Load Control Strategies / Belastningsreglering av WCDMA celler i ett tågscenario : Utvecklings av strategier för proaktiv belastningsreglering

Joshi, Raoul, Sundström, Per January 2012 (has links)
Load control design is one of the major cornerstones of radio resource management in today's UMTS networks. A WCDMA cell's ability to utilize available spectrum efficiently, maintain system stability and deliver minimum quality of service (QoS) requirements to in-cell users builds on the algorithms employed to manage the load. Admission control (AC) and congestion control (CC) are the two foremost techniques used for regulating the load, and differing environments will place varying requirements on the AC and CC schemes to optimize the QoS for the entire radio network. This thesis studies a real-life situation where cells are put under strenuous conditions, investigates the degrading effects a high-speed train has on the cell's ability to maintain acceptable levels of QoS, and proposes methods for mitigating these effects. The scenario is studied with regard to voice traffic where the limiting radio resource is downlink power. CC schemes that take levels of fairness into account between on-board train users and outdoor users are proposed and evaluated through simulation. Methods to anticipatorily adapt radio resource management (RRM) in a cell to prepare for a train is proposed and evaluated through simulation. A method to detect a high-speed train in a cell, and the users on it, is outlined and motivated but not simulated. Simulation results are promising but not conclusive. The suggested CC schemes show a surprising tendency towards an increase in congestion avoidance performance. Proactive RRM shows a significant increase in QoS for on-board users. No negative effects to users in the macro environment is noticed, with regard to the studied metrics.
2

Safe software development for a video-based train detection system in accordance with EN 50128

Dorka, Moritz 11 November 2013 (has links) (PDF)
Diese Studienarbeit gibt einen Überblick über ausgewählte Teile des Softwareentwicklungsprozesses für sicherheitsrelevante Applikationen am Beispiel eines videobasierten Zugerkennungssystems. Eine IP-Kamera und ein externer Bildverarbeitungscomputer wurden dazu mit einer speziell entworfenen, verteilten Software ausgestattet. Die in Ada und C geschriebenen Teile kommunizieren dabei über ein dediziertes, UDP-basiertes Netzwerkprotokoll. Beide Programme wurden intensiv anhand verschiedener Techniken analysiert, die in der Norm EN 50128 festgelegt sind, welche sich speziell an Software für Eisenbahnsteuerungs- und überwachungssysteme richtet. Eine an der Norm orientierte Struktur mit Verweisen auf die diskutierten Techniken zu Beginn eines jeden Abschnitts erlaubt einen schnellen Vergleich mit den originalen Anforderungen des Normtexts. Zusammenfassend haben sich die Techniken bis auf wenige Ausnahmen als sehr geeignet für die praktische Entwicklung von sicherer Software erwiesen. Allerdings entbindet die Norm durch ihre teils sehr abstrakten Anforderungen das am Projekt beteiligte Personal in keinster Weise von seiner individuellen Verantwortung. Entsprechend sind die hier vorgestellten Techniken für andere Projekte nicht ohne Anpassungen zu übernehmen. / This paper intends to give an overview of selected parts of the software development process for safety-relevant applications using the example of a video-based train detection. An IP-camera and an external image processing computer were equipped with a custom-built, distributed software system. Written in Ada and C, the system parts communicate via a dedicated UDP-based protocol. Both programs were subject to intense analysis according to measures laid down in the EN 50128 standard specifically targeted at software for railway control and protection systems. Preceding each section, a structure resembling the standard document with references to the discussed measures allows for easy comparison with the original requirements of EN 50128. In summary, the techniques have proven to be very suitable for practical safe software development in all but very few edge-cases. However, the highly abstract descriptive level of the standard requires the staff involved to accept an enormous personal responsibility throughout the entire development process. The specific measures carried out for this project may therefore not be equally applicable elsewhere.
3

Safe software development for a video-based train detection system in accordance with EN 50128

Dorka, Moritz 04 September 2013 (has links)
Diese Studienarbeit gibt einen Überblick über ausgewählte Teile des Softwareentwicklungsprozesses für sicherheitsrelevante Applikationen am Beispiel eines videobasierten Zugerkennungssystems. Eine IP-Kamera und ein externer Bildverarbeitungscomputer wurden dazu mit einer speziell entworfenen, verteilten Software ausgestattet. Die in Ada und C geschriebenen Teile kommunizieren dabei über ein dediziertes, UDP-basiertes Netzwerkprotokoll. Beide Programme wurden intensiv anhand verschiedener Techniken analysiert, die in der Norm EN 50128 festgelegt sind, welche sich speziell an Software für Eisenbahnsteuerungs- und überwachungssysteme richtet. Eine an der Norm orientierte Struktur mit Verweisen auf die diskutierten Techniken zu Beginn eines jeden Abschnitts erlaubt einen schnellen Vergleich mit den originalen Anforderungen des Normtexts. Zusammenfassend haben sich die Techniken bis auf wenige Ausnahmen als sehr geeignet für die praktische Entwicklung von sicherer Software erwiesen. Allerdings entbindet die Norm durch ihre teils sehr abstrakten Anforderungen das am Projekt beteiligte Personal in keinster Weise von seiner individuellen Verantwortung. Entsprechend sind die hier vorgestellten Techniken für andere Projekte nicht ohne Anpassungen zu übernehmen.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29 3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34 3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39 3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41 3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44 3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 / This paper intends to give an overview of selected parts of the software development process for safety-relevant applications using the example of a video-based train detection. An IP-camera and an external image processing computer were equipped with a custom-built, distributed software system. Written in Ada and C, the system parts communicate via a dedicated UDP-based protocol. Both programs were subject to intense analysis according to measures laid down in the EN 50128 standard specifically targeted at software for railway control and protection systems. Preceding each section, a structure resembling the standard document with references to the discussed measures allows for easy comparison with the original requirements of EN 50128. In summary, the techniques have proven to be very suitable for practical safe software development in all but very few edge-cases. However, the highly abstract descriptive level of the standard requires the staff involved to accept an enormous personal responsibility throughout the entire development process. The specific measures carried out for this project may therefore not be equally applicable elsewhere.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29 3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34 3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39 3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41 3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44 3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4

Development of new criteria for train detection and evaluation in critical conditions

Kerbal, Sofiane January 2019 (has links)
Railway signaling is of paramount importance to ensure traffic management andsafety on the rail network. The main lines are divided into sections called ‘blocks’,which are governed by a fixed signal installation. To prevent trains from colliding,each block allows one train at once. In France (and most European countries),train detection is performed by an electrical device called track circuit that consistsof a transmitter and a receiver installed at the track-side, and connected via therails. In the absence of a train, an electrical signal flows from the transmitter tothe receiver through the rails. As a train enters a track circuit, its axles shuntthe rails, provoking a short circuit (also called ‘shunt’): the signal transmitted tothe receiver drops. The detection of that signal drop results in the detection of atrain. This method rarely fails throughout the network, but there can be criticalcases where it may be inefficient. In this Master’s Thesis, new detection criteriaproposed in previous studies have been tested on signals measured in poor shuntingconditions. Three approaches have been tested: one in the time domain and two inthe frequency domain. The time approach compares the short-term and long-termstatistics of the received signals. The observation of a change in the spectra of thereceived signals around the 3rd order harmonic (3OH) has led to the implementationof two frequency criteria: the estimation of the band power around the 3OH andthe detection of the 3OH peaks. The obtained results show that better detection isachieved when the new criteria and the existing one are combined. / Tågsignalsystem är väsentliga för att garantera trafikstyrning och säkerhet i tågnätet.Spåren är indelade i sektioner, s.k. block, som övervakas med fasta signalinstallationer.För att hindra tåg från att krocka, tillåts bara ett tåg i taget per block. IFrankrike (och de flesta andra europeiska länder), detekteras tågen med en elektriskspårkrets som består av en sändare och en mottagare som är installerad bredvidspåret och ansluten till rälsen. När inget tåg finns på spåret, flyter en elektrisk signalfrån sändaren till mottagaren via spåret. När ett tåg anländer, kortsluts kretsenav hjulaxeln och signalen försvinner från mottagaren. Minskningen i signalstyrkaanvänds för att detektera tåget. Denna metod sällan misslyckas i tågnätet, men iovanliga fall kan det uppstå farliga situationer. I detta examensarbete utvärderasnya detektionsmetoder, som har föreslagits i tidigare studier, på signaler som haruppmätts under förhållanden med dålig kontakt mellan hjul och spår. Tre olika metoderhar testats, en i tidsdomänen och två i frekvensdomänen. Tidsdomänsmetodenjämför kortvarig och långvarig statistik för den mottagna signalen. I spektrum förden mottagna signalen, har man observerat en förändring runt den tredje övertonen,samt detektering av frekvenstoppar vid tredje övertonen. De erhållna resultatenvisar på förbättrad detektering när de nya och existerande kriterierna kombineras.

Page generated in 0.0646 seconds